Лекции по информационной безопасности

         

Основные составляющие информационной безопасности


Спектр интересов субъектов, связанных с использованием информационных систем, можно разделить на следующие категории: обеспечение доступности, целостности и конфиденциальности информационных ресурсов и поддерживающей инфраструктуры.

Иногда в число основных составляющих ИБ включают защиту от несанкционированного копирования информации, но, на наш взгляд, это слишком специфический аспект с сомнительными шансами на успех, поэтому мы не станем его выделять.

Поясним понятия доступности, целостности и конфиденциальности:

Доступность – это возможность за приемлемое время получить требуемую информационную услугу.

Под целостностью подразумевается актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения.

Наконец, конфиденциальность – это защита от несанкционированного доступа к информации.

Информационные системы создаются (приобретаются) для получения определенных информационных услуг. Если по тем или иным причинам предоставить эти услуги пользователям. становится невозможно, это, очевидно, наносит ущерб всем субъектам информационных отношений. Поэтому, не противопоставляя доступность остальным аспектам, мы выделяем её как важнейший элемент информационной безопасности.

Особенно ярко ведущая роль доступности проявляется в разного рода системах управления – производством, транспортом и т.п. Внешне менее драматичные, но также весьма неприятные последствия – и материальные, и моральные – может иметь длительная недоступность информационных услуг, которыми пользуется большое количество людей (продажа железнодорожных и авиабилетов, банковские услуги и т.п.).

Целостность можно подразделить на статическую (понимаемую как неизменность информационных объектов) и динамическую (относящуюся к корректному выполнению сложных действий (транзакций)). Средства контроля динамической целостности применяются, в частности, при анализе потока финансовых сообщений с целью выявления кражи, переупорядочения или дублирования отдельных сообщений.


Целостность оказывается важнейшим аспектом ИБ в тех случаях, когда информация служит "руководством к действию". Рецептура лекарств, предписанные медицинские процедуры, набор и характеристики комплектующих изделий, ход технологического процесса – все это примеры информации, нарушение целостности которой может оказаться в, буквальном смысле, смертельным. Неприятно и искажение официальной информации, будь то текст закона или страница Web-сервера какой-либо правительственной организации.

Конфиденциальность – самый проработанный у нас в стране аспект информационной безопасности; К сожалению, практическая реализация мер по обеспечению конфиденциальности современных информационных систем наталкивается в России на серьезные трудности. Во-первых, сведения о технических каналах утечки информации являются закрытыми, так что большинство пользователей лишено возможности составить представление о потенциальных рисках. Во-вторых, на пути пользовательской криптографии как основного средства обеспечения конфиденциальности стоят многочисленные законодательные препоны и технические проблемы.

Если вернуться к анализу интересов различных категорий субъектов информационных отношений, то почти для всех, кто реально использует ИС, на первом месте стоит доступность. Практически не уступает ей по важности целостность – какой смысл в информационной услуге, если она содержит искаженные сведения?

Наконец, конфиденциальные моменты есть также у многих организаций (даже в упоминавшихся выше учебных институтах стараются не разглашать сведения о зарплате сотрудников) и отдельных пользователей (например, пароли).


Основные угрозы целостности


На втором месте по размерам ущерба (после непреднамеренных ошибок и упущений) стоят кражи и подлоги. По данным газеты USA Today, еще в 1992 году в результате подобных противоправных действий с использованием персональных компьютеров американским организациям был нанесен общий ущерб в размере 882 миллионов долларов. Можно предположить, что реальный ущерб был намного больше, поскольку многие организации по понятным причинам скрывают такие инциденты; не вызывает сомнений, что в наши дни ущерб от такого рода действий вырос многократно.

В большинстве случаев виновниками оказывались штатные сотрудники организаций, отлично знакомые с режимом работы и мерами защиты. Это еще раз подтверждает опасность внутренних угроз, хотя говорят и пишут о них значительно меньше, чем о внешних.

Ранее мы проводили различие между статической и динамической целостностью. С целью нарушения статической целостности злоумышленник (как правило, штатный сотрудник) может:

ввести неверные данные;

изменить данные.



Иногда изменяются содержательные данные, иногда - служебная информация. Показательный случай нарушения целостности имел место в 1996 году. Служащая Oracle (личный секретарь вице-президента) предъявила судебный иск, обвиняя президента корпорации в незаконном увольнении после того, как она отвергла его ухаживания. В доказательство своей правоты женщина привела электронное письмо, якобы отправленное ее начальником президенту. Содержание письма для нас сейчас не важно; важно время отправки. Дело в том, что вице-президент предъявил, в свою очередь, файл с регистрационной информацией компании сотовой связи, из которого явствовало, что в указанное время он разговаривал по мобильному телефону, находясь вдалеке от своего рабочего места. Таким образом, в суде состоялось противостояние "файл против файла". Очевидно, один из них был фальсифицирован или изменен, то есть была нарушена его целостность. Суд решил, что подделали электронное письмо (секретарша знала пароль вице-президента, поскольку ей было поручено его менять), и иск был отвергнут...


( Теоретически возможно, что оба фигурировавших на суде файла были подлинными, корректными с точки зрения целостности, а письмо отправили пакетными средствами, однако, на наш взгляд, это было бы очень странное для вице-президента действие.)

Из приведенного случая можно сделать вывод не только об угрозах нарушения целостности, но и об опасности слепого доверия компьютерной информации. Заголовки электронного письма могут быть подделаны; письмо в целом может быть фальсифицировано лицом, знающим пароль отправителя (мы приводили соответствующие примеры). Отметим, что последнее возможно даже тогда, когда целостность

контролируется криптографическими средствами. Здесь имеет место взаимодействие разных аспектов информационной безопасности: если нарушена конфиденциальность, может пострадать целостность.

Еще один урок: угрозой целостности является не только фальсификация или изменение данных, но и отказ от совершенных действий. Если нет средств обеспечить "неотказуемость", компьютерные данные не могут рассматриваться в качестве доказательства.

Потенциально уязвимы с точки зрения нарушения целостности не только данные, но и программы. Внедрение рассмотренного выше вредоносного ПО - пример подобного нарушения.

Угрозами динамической целостности являются нарушение атомарности транзакций, переупорядочение, кража, дублирование данных или внесение дополнительных сообщений (сетевых пакетов и т.п.). Соответствующие действия в сетевой среде называются активным прослушиванием.


Основные угрозы конфиденциальности


Конфиденциальную информацию можно разделить на предметную и служебную. Служебная информация (например, пароли пользователей) не относится к определенной предметной области, в информационной системе она играет техническую роль, но ее раскрытие особенно опасно, поскольку оно чревато получением несанкционированного доступа ко всей информации, в том числе предметной.

Даже если информация хранится в компьютере или предназначена для компьютерного использования, угрозы ее конфиденциальности могут носить некомпьютерный и вообще нетехнический характер.

Многим людям приходится выступать в качестве пользователей не одной, а целого ряда систем (информационных сервисов). Если для доступа к таким системам используются многоразовые пароли или иная конфиденциальная информация, то наверняка эти данные будут храниться не только в голове, но и в записной книжке или на листках бумаги, которые пользователь часто оставляет на рабочем столе, а то и попросту теряет. И дело здесь не в неорганизованности людей, а в изначальной непригодности парольной схемы. Невозможно помнить много разных паролей; рекомендации по их регулярной (по возможности - частой) смене только усугубляют положение, заставляя применять несложные схемы чередования или вообще стараться свести дело к двум-трем легко запоминаемым (и столь же легко угадываемым) паролям.

Описанный класс уязвимых мест можно назвать размещением конфиденциальных данных в среде, где им не обеспечена (зачастую - и не может быть обеспечена) необходимая защита. Угроза же состоит в том, что кто-то не откажется узнать секреты, которые сами просятся в руки. Помимо паролей, хранящихся в записных книжках пользователей, в этот класс попадает передача конфиденциальных данных в открытом виде (в разговоре, в письме, по сети), которая делает возможным перехват данных. Для атаки могут использоваться разные технические средства (подслушивание или прослушивание разговоров, пассивное прослушивание сети и т.п.), но идея одна - осуществить доступ к данным в тот момент, когда они наименее защищены.


Угрозу перехвата данных следует принимать во внимание не только при начальном конфигурировании ИС, но и, что очень важно, при всех изменениях. Весьма опасной угрозой являются... выставки, на которые многие организации, недолго думая, отправляют оборудование из производственной сети, со всеми хранящимися на них данными. Остаются прежними пароли, при удаленном доступе они продолжают передаваться в открытом виде. Это плохо даже в пределах защищенной сети организации; в объединенной сети выставки - это слишком суровое испытание честности всех участников.

Еще один пример изменения, о котором часто забывают, - хранение данных на резервных носителях. Для защиты данных на основных носителях применяются развитые системы управления доступом; копии же нередко просто лежат в шкафах и получить доступ к ним могут многие.

Перехват данных - очень серьезная угроза, и если конфиденциальность действительно является критичной, а данные передаются по многим каналам, их защита может оказаться весьма сложной и дорогостоящей. Технические средства перехвата хорошо проработаны, доступны, просты в эксплуатации, а установить их, например на кабельную сеть, может кто угодно, так что эту угрозу нужно принимать во внимание по отношению не только к внешним, но и к внутренним коммуникациям.

Кражи оборудования являются угрозой не только для резервных носителей, но и для компьютеров, особенно портативных. Часто ноутбуки оставляют без присмотра на работе или в автомобиле, иногда просто теряют.

Опасной нетехнической угрозой конфиденциальности являются методы морально-психологического воздействия, такие как маскарад - выполнение действий под видом лица, обладающего полномочиями для доступа к данным (см., например, статью Айрэ Винклера "Задание: шпионаж" в Jet Info, 1996, 19).

К неприятным угрозам, от которых трудно защищаться, можно отнести злоупотребление полномочиями. На многих типах систем привилегированный пользователь (например системный администратор) способен прочитать любой (незашифрованный) файл, получить доступ к почте любого пользователя и т.д.Другой пример - нанесение ущерба при сервисном обслуживании. Обычно сервисный инженер получает неограниченный доступ к оборудованию и имеет возможность действовать в обход программных защитных механизмов.

Таковы основные угрозы, которые наносят наибольший ущерб субъектам информационных отношений






Основным законом Российской Федерации является Конституция, принятая 12 декабря 1993 года.


В соответствии со статьей 24 Конституции, органы государственной власти и органы местного самоуправления, их должностные лица обязаны обеспечить каждому возможность ознакомления с документами и материалами, непосредственно затрагивающими его права и свободы, если иное не предусмотрено законом.

Статья 41 гарантирует право на знание фактов и обстоятельств, создающих угрозу для жизни и здоровья людей, статья 42 - право на знание достоверной информации о состоянии окружающей среды.

В принципе, право на информацию может реализовываться средствами бумажных технологий, но в современных условиях наиболее практичным и удобным для граждан является создание соответствующими законодательными, исполнительными и судебными органами информационных серверов и поддержание доступности и целостности представленных на них сведений, то есть обеспечение их (серверов) информационной безопасности.

Статья 23 Конституции гарантирует право на личную и семейную тайну, на тайну переписки, телефонных переговоров, почтовых, телеграфных и иных сообщений, статья 29 - право свободно искать, получать, передавать, производить и распространять информацию любым законным способом. Современная интерпретация этих положений включает обеспечение конфиденциальности данных, в том числе в процессе их передачи по компьютерным сетям, а также доступ к средствам защиты информации.

В Гражданском кодексе Российской Федерации (в своем изложении мы опираемся на редакцию от 15 мая 2001 года) фигурируют такие понятия, как банковская, коммерческая и служебная тайна. Согласно статье 139, информация составляет служебную или коммерческую тайну в случае, когда информация имеет действительную или потенциальную коммерческую ценность в силу неизвестности ее третьим лицам, к ней нет свободного доступа на законном основании, и обладатель информации принимает меры к охране ее конфиденциальности. Это подразумевает, как минимум, компетентность в вопросах ИБ и наличие доступных (и законных) средств обеспечения конфиденциальности.


Весьма продвинутым в плане информационной безопасности является Уголовный кодекс Российской Федерации (редакция от 14 марта 2002 года). Глава 28 - "Преступления в сфере компьютерной информации" - содержит три статьи:

статья 272. Неправомерный доступ к компьютерной информации;

статья 273. Создание, использование и распространение вредоносных программ для ЭВМ;

статья 274. Нарушение правил эксплуатации ЭВМ, системы ЭВМ или их сети.

Первая имеет дело с посягательствами на конфиденциальность, вторая - с вредоносным ПО, третья - с нарушениями доступности и целостности, повлекшими за собой уничтожение, блокирование или модификацию охраняемой законом информации ЭВМ. Включение в сферу действия УК РФ вопросов доступности информационных сервисов представляется нам очень своевременным.

Статья 138 УК РФ, защищая конфиденциальность персональных данных, предусматривает наказание за нарушение тайны переписки, телефонных переговоров, почтовых, телеграфных или иных сообщений. Аналогичную роль для банковской и коммерческой тайны играет статья 183 УК РФ.

Интересы государства в плане обеспечения конфиденциальности информации нашли наиболее полное выражение в Законе "О государственной тайне" (с изменениями и дополнениями от 6 октября 1997 года). В нем гостайна определена как защищаемые государством сведения в области его военной, внешнеполитической, экономической, разведывательной, контрразведывательной и оперативно-розыскной деятельности, распространение которых может нанести ущерб безопасности Российской Федерации. Там же дается определение средств защиты информации. Согласно данному Закону, это технические, криптографические, программные и другие средства, предназначенные для защиты сведений, составляющих государственную тайну; средства, в которых они реализованы, а также средства контроля эффективности защиты информации. Подчеркнем важность последней части определения.


Основы мер обеспечения высокой доступности


Основой мер повышения доступности является применение структурированного подхода, нашедшего воплощение в объектно-ориентированной методологии. Структуризация необходима по отношению ко всем аспектам и составным частям информационной системы - от архитектуры до административных баз данных, на всех этапах ее жизненного цикла - от инициации до выведения из эксплуатации. Структуризация, важная сама по себе, является одновременно необходимым условием практической реализуемости прочих мер повышения доступности. Только маленькие системы можно строить и эксплуатировать как угодно. У больших систем свои законы, которые, как мы уже указывали, программисты впервые осознали более 30 лет назад.

При разработке мер обеспечения высокой доступности информационных сервисов рекомендуется руководствоваться следующими архитектурными принципами, рассматривавшимися ранее:

апробированность всех процессов и составных частей информационной системы;

унификация процессов и составных частей;

управляемость процессов, контроль состояния частей;

автоматизация процессов;

модульность архитектуры;

ориентация на простоту решений.

Доступность системы в общем случае достигается за счет применения трех групп мер, направленных на повышение:

безотказности (под этим понимается минимизация вероятности возникновения какого-либо отказа; это элемент пассивной безопасности, который дальше рассматриваться не будет);

отказоустойчивости (способности к нейтрализации отказов, "живучести", то есть способности сохранять требуемую эффективность, несмотря на отказы отдельных компонентов);

обслуживаемости (под обслуживаемостью понимается минимизация времени простоя отказавших компонентов, а также отрицательного влияния ремонтных работ на эффективность информационных сервисов, то есть быстрое и безопасное восстановление после отказов).

Главное при разработке и реализации мер обеспечения высокой доступности - полнота и систематичность. В этой связи представляется целесообразным составить (и поддерживать в актуальном состоянии) карту информационной системы организации (на что мы уже обращали внимание), в которой фигурировали бы все объекты ИС, их состояние, связи между ними, процессы, ассоциируемые с объектами и связями. С помощью подобной карты удобно формулировать намечаемые меры, контролировать их исполнение, анализировать состояние ИС.



Особенности современных информационных систем, существенные с точки зрения безопасности


Информационная система типичной современной организации является весьма сложным образованием, построенным в многоуровневой архитектуре клиент/сервер, пользующимся многочисленными внешними сервисами и, в свою очередь, предоставляющим собственные сервисы вовне. Даже сравнительно небольшие магазины, обеспечивающие расчет с покупателями по пластиковым картам (и, конечно, имеющие внешний Web-сервер), критическим образом зависят от своих информационных систем и, в частности (и вместе с покупателями), - от защищенности всех компонентов систем и коммуникаций между ними.

С точки зрения безопасности наиболее существенными представляются следующие аспекты современных ИС:

корпоративная сеть имеет несколько территориально разнесенных частей (поскольку организация располагается на нескольких производственных площадках), связи между которыми находятся в ведении внешнего поставщика сетевых услуг, выходя за пределы зоны, контролируемой организацией;

корпоративная сеть имеет одно или несколько подключений к Интернет;

на каждой из производственных площадок могут находиться критически важные серверы, в доступе к которым нуждаются работники, базирующиеся на других площадках, мобильные работники и, возможно, сотрудники сторонних организаций и другие внешние пользователи;

для доступа пользователей могут применяться не только компьютеры, но и потребительские устройства, использующие, в частности, беспроводную связь;

в течение одного сеанса работы пользователю приходится обращаться к нескольким информационным сервисам, опирающимся на разные аппаратно-программные платформы;

к доступности информационных сервисов предъявляются жесткие требования, обычно выражающиеся в необходимости круглосуточного функционирования с максимальным временем простоя порядка минут или десятков минут;

информационная система представляет собой сеть с активными агентами, то есть в процессе работы программные компоненты, такие как аплеты

или сервлеты, передаются с одной машины на другую и выполняются в целевой среде, поддерживая связь с удаленными компонентами;


не все пользовательские системы контролируются сетевыми и/или системными администраторами организации;

программное обеспечение, особенно полученное по сети, не может считаться доверенным, в нем могут присутствовать зловредные элементы или ошибки, создающие уязвимости в защите;

конфигурация информационной системы постоянно изменяется на уровнях административных данных, программ и аппаратуры (меняется состав пользователей, их привилегии, версии программ, появляются новые сервисы, новая аппаратура и т.п.).

Следует учитывать еще по крайней мере два момента. Во-первых, для каждого сервиса основные грани ИБ (доступность, целостность, конфиденциальность) трактуются по-своему. Целостность с точки зрения системы управления базами данных и с точки зрения почтового сервера - вещи принципиально разные. Бессмысленно говорить о безопасности локальной или иной сети вообще, если сеть включает в себя разнородные компоненты. Следует анализировать защищенность сервисов, функционирующих в сети. Для разных сервисов и защиту строят по-разному. Во-вторых, основная угроза информационной безопасности организаций по-прежнему исходит не от внешних злоумышленников, а от собственных сотрудников, по той или иной причине не являющихся лояльными.

В силу изложенных причин далее будут рассматриваться распределенные, разнородные, многосервисные, эволюционирующие системы. Соответственно, нас будут интересовать решения, ориентированные на подобные конфигурации.


Отказоустойчивость и зона риска


Информационную систему можно представить в виде графа сервисов, ребра в котором соответствуют отношению "сервис A непосредственно использует сервис B".

Пусть в результате осуществления некоторой атаки (источником которой может быть как человек, так и явление природы) выводится из строя подмножество сервисов S1 (то есть эти сервисы в результате нанесенных повреждений становятся неработоспособными). Назовем S1 зоной поражения.

В зону риска S мы будем включать все сервисы, эффективность которых при осуществлении атаки падает ниже допустимого предела. Очевидно, S1 - подмножество S. S строго включает S1, когда имеются сервисы, непосредственно не затронутые атакой, но критически зависящие от пораженных, то есть неспособные переключиться на использование эквивалентных услуг либо в силу отсутствия таковых, либо в силу невозможности доступа к ним. Например, зона поражения может сводиться к одному порту концентратора, обслуживающему критичный сервер, а зона риска охватывает все рабочие места пользователей сервера.

Чтобы система не содержала одиночных точек отказа, то есть оставалась "живучей" при реализации любой из рассматриваемых угроз, ни одна зона риска не должна включать в себя предоставляемые услуги. Нейтрализацию отказов нужно выполнять внутри системы, незаметно для пользователей, за счет размещения достаточного количества избыточных ресурсов.

С другой стороны, естественно соизмерять усилия по обеспечению "живучести" с рассматриваемыми угрозами. Когда рассматривается набор угроз, соответствующие им зоны поражения могут оказаться вложенными, так что "живучесть" по отношению к более серьезной угрозе автоматически влечет за собой и "живучесть" в более легких случаях. Следует учитывать, однако, что обычно стоимость переключения на резервные ресурсы растет вместе с увеличением объема этих ресурсов. Значит, для наиболее вероятных угроз целесообразно минимизировать зону риска, даже если предусмотрена нейтрализация объемлющей угрозы.
Нет смысла переключаться на резервный вычислительный центр только потому, что у одного из серверов вышел из строя блок питания.

Зону риска можно трактовать не только как совокупность ресурсов, но и как часть пространства, затрагиваемую при реализации угрозы. В таком случае, как правило, чем больше расстояние дублирующего ресурса от границ зоны риска, тем выше стоимость его поддержания, поскольку увеличивается протяженность линий связи, время переброски персонала и т.п. Это еще один довод в пользу адекватного противодействия угрозам, который следует принимать во внимание при размещении избыточных ресурсов и, в частности, при организации резервных центров.

Введем еще одно понятие. Назовем зоной нейтрализации угрозы совокупность ресурсов, вовлеченных в нейтрализацию отказа, возникшего вследствие реализации угрозы. Имеются в виду ресурсы, режим работы которых в случае отказа изменяется. Очевидно, зона риска является подмножеством зоны нейтрализации. Чем меньше разность между ними, тем экономичнее данный механизм нейтрализации.

Все, что находится вне зоны нейтрализации, отказа "не чувствует" и может трактовать внутренность этой зоны как безотказную. Таким образом, в иерархически организованной системе грань между "живучестью" и обслуживаемостью, с одной стороны, и безотказностью, с другой стороны, относительна. Целесообразно конструировать целостную информационную систему из компонентов, которые на верхнем уровне можно считать безотказными, а вопросы "живучести" и обслуживаемости решать в пределах каждого компонента.


Парольная аутентификация


Главное достоинство парольной аутентификации - простота и привычность. Пароли давно встроены в операционные системы и иные сервисы. При правильном использовании пароли могут обеспечить приемлемый для многих организаций уровень безопасности. Тем не менее, по совокупности характеристик их следует признать самым слабым средством проверки подлинности.

Чтобы пароль был запоминающимся, его зачастую делают простым (имя подруги, название спортивной команды и т.п.). Однако простой пароль нетрудно угадать, особенно если знать пристрастия данного пользователя. Известна классическая история про советского разведчика Рихарда Зорге, объект внимания которого через слово говорил "карамба"; разумеется, этим же словом открывался сверхсекретный сейф.

Иногда пароли с самого начала не хранятся в тайне, так как имеют стандартные значения, указанные в документации, и далеко не всегда после установки системы производится их смена.

Ввод пароля можно подсмотреть. Иногда для подглядывания используются даже оптические приборы.

Пароли нередко сообщают коллегам, чтобы те могли, например, подменить на некоторое время владельца пароля. Теоретически в подобных случаях более правильно задействовать средства управления доступом, но на практике так никто не поступает; а тайна, которую знают двое, это уже не тайна.

Пароль можно угадать "методом грубой силы", используя, скажем, словарь. Если файл паролей зашифрован, но доступен для чтения, его можно скачать к себе на компьютер и попытаться подобрать пароль, запрограммировав полный перебор (предполагается, что алгоритм шифрования известен).

Тем не менее, следующие меры позволяют значительно повысить надежность парольной защиты:

наложение технических ограничений (пароль должен быть не слишком коротким, он должен содержать буквы, цифры, знаки пунктуации и т.п.);

управление сроком действия паролей, их периодическая смена;

ограничение доступа к файлу паролей;

ограничение числа неудачных попыток входа в систему (это затруднит применение "метода грубой силы");

обучение пользователей;

использование программных генераторов паролей (такая программа, основываясь на несложных правилах, может порождать только благозвучные и, следовательно, запоминающиеся пароли).

Перечисленные меры целесообразно применять всегда, даже если наряду с паролями используются другие методы аутентификации.



Планирование восстановительных работ


Ни одна организация не застрахована от серьезных аварий, вызванных естественными причинами, чьим-то злым умыслом, халатностью или некомпетентностью. В то же время, у каждой организации есть функции, которые она считает критически важными, выполнение которых она хотела бы продолжать, несмотря ни на что. Планирование восстановительных работ позволяет подготовиться к авариям, уменьшить ущерб от них и сохранить способность к функционированию хотя бы в минимальном объеме.

Отметим, что меры информационной безопасности можно разделить на три группы, в соответствии с тем, направлены ли они на предупреждение, обнаружение или ликвидацию последствий атак. Большинство мер носят предупредительный характер. Оперативный анализ регистрационной информации и некоторые аспекты реагирования на нарушения (так называемый активный аудит) служат для обнаружения и отражения атак. Планирование восстановительных работ, очевидно, можно отнести к последней из трех перечисленных групп.

Процесс планирования восстановительных работ можно подразделить на следующие этапы:

выявление критически важных функций организации, установление приоритетов;

идентификация ресурсов, необходимых для выполнения критически важных функций;

определение перечня возможных аварий;

разработка стратегии восстановительных работ;

подготовка к реализации выбранной стратегии;

проверка стратегии.

Планируя восстановительные работы, следует отдавать себе отчет в том, что полностью сохранить функционирование организации не всегда возможно. Необходимо выявить критически важные функции, без которых организация теряет свое лицо, и даже среди критичных функций расставить приоритеты, чтобы как можно быстрее и с минимальными затратами возобновить деятельность после аварии.

Идентифицируя ресурсы, необходимые для выполнения критически важных функций, следует помнить, что многие из них имеют некомпьютерный характер. На этом этапе желательно привлечение специалистов разного профиля, способных в совокупности охватить все аспекты проблемы.
Критичные ресурсы обычно относятся к одной из следующих категорий:

персонал,

информационная инфраструктура,

физическая инфраструктура.

Составляя списки критически важных специалистов, следует учитывать, что некоторые из них могут впрямую пострадать от аварии (например, от пожара), кто-то может находиться в состоянии стресса, часть сотрудников, возможно, будет лишена возможности попасть на работу (например, в случае массовых беспорядков). Желательно иметь некоторый резерв специалистов или заранее определить каналы, по которым можно на время привлечь дополнительный персонал.

Информационная инфраструктура включает в себя следующие элементы:

компьютеры,

программы и данные,

информационные сервисы внешних организаций,

документацию.

Нужно подготовиться к тому, что на "запасном аэродроме", куда организация будет эвакуирована после аварии, аппаратная платформа может отличаться от исходной. Соответственно, следует продумать меры поддержания совместимости по программам и данным.

Среди внешних информационных сервисов для коммерческих организаций, вероятно, важнее всего получение оперативной информации и связь с государственными службами, курирующими данный сектор экономики.

Документация важна хотя бы потому, что не вся информация, с которой оперирует организация, представлена в электронной форме. Скорее всего, план восстановительных работ напечатан на бумаге.

К физической инфраструктуре относятся здания, инженерные коммуникации, средства связи, оргтехника и многое другое. Компьютерная техника не может работать в плохих условиях, без нормального электропитания и т.п.

Анализируя критичные ресурсы, целесообразно учесть временной профиль их использования. Большинство ресурсов нужны постоянно, но в некоторых нужда может возникать только в определенные периоды (например, в конце месяца или года при составлении отчета).

При определении перечня возможных аварий нужно попытаться разработать их сценарии. Как будут развиваться события? Каковы могут оказаться масштабы бедствия? Что произойдет с критичными ресурсами? Например, смогут ли люди попасть на работу? Будут ли выведены из строя компьютеры? Возможны ли случаи саботажа? Будет ли работать связь? Пострадает ли здание организации? Можно ли будет найти и прочитать необходимые бумаги?



Стратегия восстановительных работ должна базироваться на наличных ресурсах и быть не слишком накладной для организации. При разработке стратегии целесообразно провести анализ рисков, которым подвержены критичные функции, и попытаться выбрать наиболее экономичное решение.

Стратегия должна предусматривать не только работу по временной схеме, но и возвращение к нормальному функционированию.

Подготовка к реализации выбранной стратегии состоит в проработке детального плана действий в экстренных ситуациях и по их окончании, а также в обеспечении некоторой избыточности критичных ресурсов. Последнюю цель можно достичь без большого расхода средств, если заключить с одной или несколькими организациями соглашения о взаимной поддержке в случае аварий - тот, кто не пострадал, предоставляют часть своих ресурсов во временное пользование менее удачливым партнерам.

Избыточность обеспечивается также мерами резервного копирования, хранением копий в нескольких местах, представлением информации в разных видах (на бумаге и в файлах) и т.д.

Разумно заключить соглашение с поставщиками информационных услуг о первоочередном обслуживании в критических ситуациях или иметь соглашения с несколькими поставщиками. Правда, эти меры могут потребовать определенных расходов.

Проверка стратегии производится путем анализа подготовленного плана, принятых и намеченных мер.






Поддержание работоспособности


Мы переходим к рассмотрению рутинных действий, направленных на поддержание работоспособности информационных систем. Именно здесь таится наибольшая опасность. Нечаянные ошибки системных администраторов и пользователей грозят повреждением аппаратуры, разрушением программ и данных; "в лучшем случае" создаются уязвимости, делающие возможной реализацию угроз.

Недооценка факторов безопасности в повседневной работе - ахиллесова пята многих организаций. Дорогие средства безопасности теряют смысл, если они плохо документированы, конфликтуют с другим программным обеспечением, а пароль системного администратора не менялся с момента установки.

Можно выделить следующие направления повседневной деятельности:

поддержка пользователей;

поддержка программного обеспечения;

конфигурационное управление;

резервное копирование;

управление носителями;

документирование;

регламентные работы.

Поддержка пользователей состоит прежде всего в консультировании и в оказании помощи при решении разного рода проблем. Иногда в организациях создают для этой цели специальный "стол справок"; чаще от пользователей отбивается системный администратор. Очень важно в потоке вопросов, умных и не очень, уметь выявлять проблемы, связанные с информационной безопасностью. Так, многие трудности пользователей, работающих на персональных компьютерах, могут быть следствием заражения вирусами. Целесообразно фиксировать вопросы пользователей, чтобы выявлять их типичные ошибки и выпускать памятки с рекомендациями для распространенных ситуаций.

Поддержка программного обеспечения - одно из важнейших средств обеспечения целостности информации. Прежде всего, необходимо контролировать, какое программное обеспечение выполняется на компьютерах. Если пользователи могут устанавливать программы по своему усмотрению, это чревато заражением вирусами, а также появлением утилит, действующих в обход защитных средств. Вполне вероятно также, что самодеятельность пользователей постепенно приведет к хаосу на их компьютерах, а исправлять ситуацию придется системному администратору.


Второй аспект поддержки программного обеспечения - контроль за отсутствием неавторизованного изменения программ и прав доступа к ним. Сюда же можно отнести поддержание эталонных копий программных систем. Обычно контроль достигается комбинированием средств физического и логического управления доступом, а также использованием утилит проверки и поддержания целостности.

Конфигурационное управление позволяет контролировать и фиксировать изменения, вносимые в программную конфигурацию. Прежде всего, необходимо застраховаться от случайных или непродуманных модификаций, уметь как минимум возвращаться к прошлой, работающей версии. Фиксация изменений позволит легко восстановить текущую версию после аварии.

Лучший способ уменьшить количество ошибок в рутинной работе - в максимальной степени автоматизировать ее. Правы "ленивые" программисты и системные администраторы, которые, поглядев на море однообразных задач, говорят: "Я ни за что не буду делать этого; я напишу программу, которая сделает все за меня". Автоматизация и безопасность - родные сестры; тот, кто заботится в первую очередь об облегчении собственного труда, на самом деле оптимальным образом формирует режим информационной безопасности.

Резервное копирование необходимо для восстановления программ и данных после аварий. И здесь целесообразно автоматизировать работу, как минимум сформировав компьютерное расписание выполнения полных и инкрементальных копий, а как максимум воспользовавшись соответствующими программными продуктами (см., например, Jet Info, 2000, 12). Нужно также наладить размещение копий в безопасном месте, защищенном от несанкционированного доступа, пожаров, протечек, то есть от всего, что чревато кражей или повреждением носителей. Целесообразно иметь несколько экземпляров резервных копий и часть из них хранить вне территории организации, защищаясь таким образом от крупных аварий и аналогичных инцидентов.

Время от времени в тестовых целях следует проверять возможность восстановления информации с копий.



Управление носителями служит для обеспечения физической защиты и учета дискет, лент, печатных выдач и т.п. Управление носителями должно обеспечить конфиденциальность, целостность и доступность информации, хранящейся вне компьютерных систем. Под физической защитой здесь понимается не только отражение попыток несанкционированного доступа, но и предохранение от вредных влияний окружающей среды (жары, холода, влаги, магнетизма). Управление носителями должно охватывать весь жизненный цикл - от закупки до выведения из эксплуатации.

Документирование - неотъемлемая часть информационной безопасности. В виде документов оформляется почти все - от политики безопасности до журнала учета носителей. Важно, чтобы документация была актуальной, отражала текущее, а не прошлое, состояние дел, причем отражала в непротиворечивом виде.

К хранению некоторых документов (содержащих, например, анализ системных уязвимостей и угроз) применимы требования обеспечения конфиденциальности, к другим, таким как план восстановления после аварий - требования целостности и доступности (в критической ситуации план необходимо найти и прочитать).

Регламентные работы - очень серьезная угроза безопасности. Лицо, осуществляющее регламентные работы, получает исключительный доступ к системе, и на практике очень трудно проконтролировать, какие именно действия совершаются. Здесь на первый план выходит степень доверия к тем, кто выполняет работы.


Подготовительные этапы управления рисками


В этом разделе будут описаны первые три этапа процесса управления рисками.

Выбор анализируемых объектов и уровня детализации их рассмотрения - первый шаг в оценке рисков. Для небольшой организации допустимо рассматривать всю информационную инфраструктуру; однако, если организации крупная, всеобъемлющая оценка может потребовать неприемлемых затрат времени и сил. В таком случае следует сосредоточиться на наиболее важных сервисах, заранее соглашаясь с приближенностью итоговой оценки. Если важных сервисов все еще много, выбираются те из них, риски для которых заведомо велики или неизвестны.

Мы уже указывали на целесообразность создания карты информационной системы организации. Для управления рисками подобная карта особенно важна, поскольку она наглядно показывает, какие сервисы выбраны для анализа, а какими было решено пренебречь. Если ИС меняется, а карта поддерживается в актуальном состоянии, то при переоценке рисков сразу станет ясно, какие новые или существенно изменившиеся сервисы нуждаются в рассмотрении.

Вообще говоря, уязвимым является каждый компонент информационной системы - от куска сетевого кабеля, который могут прогрызть мыши, до базы данных, которая может быть разрушена из-за неумелых действий администратора. Как правило, в сферу анализа невозможно включить каждый винтик и каждый байт. Приходится останавливаться на некотором уровне детализации, опять-таки отдавая себе отчет в приближенности оценки. Для новых систем предпочтителен детальный анализ; старая система, подвергшаяся небольшим модификациям, может быть проанализирована более поверхностно.

Очень важно выбрать разумную методологию оценки рисков. Целью оценки является получение ответа на два вопроса: приемлемы ли существующие риски, и если нет, то какие защитные средства экономически целесообразно использовать. Значит, оценка должна быть количественной, допускающей сопоставление с заранее выбранными границами допустимости и расходами на реализацию новых регуляторов безопасности. Управление рисками - типичная оптимизационная задача, и существует довольно много программных продуктов, способных помочь в ее решении (иногда подобные продукты просто прилагаются к книгам по информационной безопасности).
Принципиальная трудность, однако, состоит в неточности исходных данных. Можно, конечно, попытаться получить для всех анализируемых величин денежное выражение, высчитать все с точностью до копейки, но большого смысла в этом нет. Практичнее пользоваться условными единицами. В простейшем и вполне допустимом случае можно пользоваться трехбалльной шкалой. Далее мы продемонстрируем, как это делается.

При идентификации активов, то есть тех ресурсов и ценностей, которые организация пытается защитить, следует, конечно, учитывать не только компоненты информационной системы, но и поддерживающую инфраструктуру, персонал, а также нематериальные ценности, такие как репутация организации. Отправной точкой здесь является представление о миссии организации, то есть о видимых снаружи основных направлениях деятельности, которые желательно (или необходимо) сохранить в любом случае. Выражаясь объектно-ориентированным языком, следует в первую очередь описать внешний интерфейс организации, рассматриваемой как абстрактный объект.

Одним из главных результатов процесса идентификации активов является получение детальной информационной структуры организации и способов ее (структуры) использования. Эти сведения целесообразно нанести на карту ИС в качестве граней соответствующих объектов.

Информационной основой сколько-нибудь крупной организации является сеть, поэтому в число аппаратных активов следует включить компьютеры (серверы, рабочие станции, ПК), периферийные устройства, внешние интерфейсы, кабельное хозяйство, активное сетевое оборудование (мосты, маршрутизаторы и т.п.). К программным активам, вероятно, будут отнесены операционные системы (сетевая, серверные и клиентские), прикладное программное обеспечение, инструментальные средства, средства управления сетью и отдельными системами, Важно зафиксировать, где (в каких узлах сети) хранится программное обеспечение и из каких узлов используется. Третьим видом информационных активов являются данные, которые хранятся, обрабатываются и передаются по сети.Следует классифицировать данные по типам и степени конфиденциальности, выявить места их хранения и обработки, способы доступа к ним. Все это важно для оценки последствий нарушений информационной безопасности.

Управление рисками - процесс далеко не линейный. Практически все его этапы связаны между собой, и по завершении почти любого из них может выявиться необходимость возврата к предыдущему. Так, при идентификации активов может появиться понимание, что выбранные границы анализа следует расширить, а степень детализации - увеличить. Особенно труден первичный анализ, когда многократные возвраты к началу неизбежны.


Политика безопасности


С практической точки зрения политику безопасности целесообразно рассматривать на трех уровнях детализации. К верхнему уровню можно отнести решения, затрагивающие организацию в целом. Они носят весьма общий характер и, как правило, исходят от руководства организации. Примерный список подобных решений может включать в себя следующие элементы:

решение сформировать или пересмотреть комплексную программу обеспечения информационной безопасности, назначение ответственных за продвижение программы;

формулировка целей, которые преследует организация в области информационной безопасности, определение общих направлений в достижении этих целей;

обеспечение базы для соблюдения законов и правил;

формулировка административных решений по тем вопросам реализации программы безопасности, которые должны рассматриваться на уровне организации в целом.

Для политики верхнего уровня цели организации в области информационной безопасности формулируются в терминах целостности, доступности и конфиденциальности. Если организация отвечает за поддержание критически важных баз данных, на первом плане может стоять уменьшение числа потерь, повреждений или искажений данных. Для организации, занимающейся продажей компьютерной техники, вероятно, важна актуальность информации о предоставляемых услугах и ценах и ее доступность максимальному числу потенциальных покупателей. Руководство режимного предприятия в первую очередь заботится о защите от несанкционированного доступа, то есть о конфиденциальности.

На верхний уровень выносится управление защитными ресурсами и координация использования этих ресурсов, выделение специального персонала для защиты критически важных систем и взаимодействие с другими организациями, обеспечивающими или контролирующими режим безопасности.

Политика верхнего уровня должна четко очерчивать сферу своего влияния. Возможно, это будут все компьютерные системы организации (или даже больше, если политика регламентирует некоторые аспекты использования сотрудниками своих домашних компьютеров).
Возможна, однако, и такая ситуация, когда в сферу влияния включаются лишь наиболее важные системы.

В политике должны быть определены обязанности должностных лиц по выработке программы безопасности и проведению ее в жизнь. В этом смысле политика безопасности является основой подотчетности персонала.

Политика верхнего уровня имеет дело с тремя аспектами законопослушности и исполнительской дисциплины. Во-первых, организация должна соблюдать существующие законы. Во-вторых, следует контролировать действия лиц, ответственных за выработку программы безопасности. Наконец, необходимо обеспечить определенную степень исполнительности персонала, а для этого нужно выработать систему поощрений и наказаний.

Вообще говоря, на верхний уровень следует выносить минимум вопросов. Подобное вынесение целесообразно, когда оно сулит значительную экономию средств или когда иначе поступить просто невозможно.

Британский стандарт ВS 7799:1995 рекомендует включать в документ, характеризующий политику безопасности организации, следующие разделы:

вводный, подтверждающий озабоченность высшего руководства проблемами информационной безопасности;

организационный, содержащий описание подразделений, комиссий, групп и т.д., отвечающих за работы в области информационной безопасности;

классификационный, описывающий имеющиеся в организации материальные и информационные ресурсы и необходимый уровень их защиты;

штатный, характеризующий меры безопасности, применяемые к персоналу (описание должностей с точки зрения информаци­онной безопасности, организация обучения и переподготовки персонала, порядок реагирования на нарушения режима безо­пасности и т.п.);

раздел, освещающий вопросы физической защиты;

управляющий раздел, описывающий подход к управлению компьютерами и компьютерными сетями;

раздел, описывающий правила разграничения доступа к произ­водственной информации;

раздел, характеризующий порядок разработки и сопровожде­ния систем;

раздел, описывающий меры, направленные на обеспечение не­прерывной работы организации;



юридический раздел, подтверждающий соответствие политики безопасности действующему законодательству.

К среднему уровню можно отнести вопросы, касающиеся отдельных аспектов информационной безопасности, но важные для различных эксплуатируемых организацией систем. Примеры таких вопросов — отношение к передовым (но, возможно, недостаточно проверенным) технологиям, доступ в Internet (как совместить свободу доступа к информации с защитой от внешних угроз?), использование домашних компьютеров, применение пользователями неофициального программного обеспечения и т.д.

Политика среднего уровня должна для каждого аспекта освещать следующие темы:

Описание аспекта. Например, если рассмотреть применение пользователями неофициального программного обеспечения, последнее можно определить как ПО, которое не было одобрено и/или закуплено на уровне организации.

Область применения. Следует определить, где, когда, как, по отношению к кому и чему применяется данная политика безопасности. Например, касается ли политика, связанная с использованием неофициального программного обеспечения, организаций-субподрядчиков? Затрагивает ли она сотрудников, пользующихся портативными и домашними компьютерами и вынужденных переносить информацию на производственные машины?

Позиция организации по данному аспекту. Продолжая пример с неофициальным программным обеспечением, можно представить себе позиции полного запрета, выработки процедуры приемки подобного ПО и т.п. Позиция может быть сформулирована и в гораздо более общем виде, как набор целей, которые преследует организация в данном аспекте. Вообще стиль документов, определяющих политику безопасности (как и их перечень), в разных организациях может сильно отличаться.

Роли и обязанности. В "политический" документ необходимо включить информацию о должностных лицах, ответственных за реализацию политики безопасности. Например, если для использования неофициального программного обеспечения сотрудникам требуется разрешение руководства, должно быть известно, у кого и как его можно получить.


Если неофициальное программное обеспечение использовать нельзя, следует знать, кто следит за выполнением данного правила.

Законопослушность. Политика должна содержать общее описание запрещенных действий и наказаний за них.

Точки контакта. Должно быть известно, куда следует обращаться за разъяснениями, помощью и дополнительной информацией. Обычно "точкой контакта" служит определенное должностное лицо, а не конкретный человек, занимающий в данный момент данный пост.

Политика безопасности нижнего уровня относится к конкретным информационным сервисам. Она включает в себя два аспекта — цели и правила их достижения, поэтому ее порой трудно отделить от вопросов реализации. В отличие от двух верхних уровней, рассматриваемая политика должна быть определена более подробно. Есть много вещей, специфичных для отдельных видов услуг, которые нельзя единым образом регламентировать в рамках всей организации. В то же время, эти вещи настолько важны для обеспечения режима безопасности, что относящиеся к ним решения должны приниматься на управленческом, а не техническом уровне. Приведем несколько примеров вопросов, на которые следует дать ответ в политике безопасности нижнего уровня:

кто имеет право доступа к объектам, поддерживаемым сервисом?

при каких условиях можно читать и модифицировать данные?

как организован удаленный доступ к сервису?

При формулировке целей политики нижнего уровня можно исходить из соображений целостности, доступности и конфиденциальности, но нельзя на этом останавливаться. Ее цели должны быть более конкретными. Например, если речь идет о системе расчета заработной платы, можно поставить цель, чтобы только сотрудникам отдела кадров и бухгалтерии позволялось вводить и модифицировать информацию. В более общем случае цели должны связывать между собой объекты сервиса и действия с ними.

Из целей выводятся правила безопасности, описывающие, кто, что и при каких условиях может делать. Чем подробнее правила, чем более формально они изложены, тем проще поддержать их выполнение программно-техническими средствами.С другой стороны, слишком жесткие правила могут мешать работе пользователей, вероятно, их придется часто пересматривать. Руководству предстоит найти разумный компромисс, когда за приемлемую цену будет обеспечен приемлемый уровень безопасности, а сотрудники не окажутся чрезмерно связаны. Обычно наиболее формально задаются права доступа к объектам ввиду особой важности данного вопроса.


Понятие информационной безопасности


Словосочетание "информационная безопасность" в разных контекстах может иметь различный смысл.

В Доктрине информационной безопасности Российской Федерации термин "информационная безопасность" используется в широком смысле. Имеется в виду состояние защищенности национальных интересов в информационной сфере.

В Законе РФ "Об участии в международном информационном обмене" информационная безопасность определяется аналогичным образом – как состояние защищенности информационной среды общества, обеспечивающее ее формирование, использование и развитие в интересах граждан, организаций, государства.

В данном курсе наше внимание будет сосредоточено на хранении, обработке и передаче информации вне зависимости от того, на каком языке (русском или каком-либо ином) она закодирована, кто или что является ее источником и какое психологическое воздействие она оказывает на людей. Поэтому термин "информационная безопасность" будет использоваться в узком смысле.

Под информационной безопасностью мы будем понимать защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений, в том числе владельцам и пользователям информации и поддерживающей инфраструктуры.

Защита информации – это комплекс мероприятий, направленных на обеспечение информационной безопасности.

Таким образом, правильный с методологической точки зрения подход к проблемам информационной безопасности начинается с выявления субъектов информационных отношений и интересов этих субъектов, связанных с использованием информационных систем (ИС). Угрозы информационной безопасности – это оборотная сторона использования ин- формационных технологий.

Из этого положения можно вывести два важных следствия:

1. Трактовка проблем, связанных с информационной безопасностью, для разных категорий субъектов может существенно различаться. Для иллюстрации достаточно сопоставить режимные государственные организации и учебные институты.


2.       ИБ не сводится исключительно к защите от несанкционированного доступа к информации, это принципиально более широкое понятие. Субъект информационных отношений может пострадать (понести убытки и/или получить моральный ущерб) не только от несанкционированного доступа, но и от поломки системы, вызвавшей перерыв в работе. Более того, для многих открытых организаций (например, учебных) собственно защита от несанкционированного доступа к информации стоит по важности отнюдь не на первом месте.

Возвращаясь к вопросам терминологии, отметим, что термин "компьютерная безопасность" (как эквивалент или заменитель ИБ) представляется нам слишком узким. Компьютеры – только одна из составляющих информационных систем.

Согласно определению информационной безопасности, она зависит не только от компьютеров, но и от поддерживающей инфраструктуры, к которой можно отнести системы электро-, водо- и теплоснабжения, кондиционеры, средства коммуникаций и, конечно, обслуживающий персонал. Эта инфраструктура имеет самостоятельную ценность, но нас будет интересовать лишь то, как она влияет на выполнение информационной системой предписанных ей функций.

Обратим внимание, что в определении ИБ перед существительным – "ущерб" стоит прилагательное "неприемлемый". Очевидно, застраховаться от всех видов ущерба невозможно, тем более невозможно сделать это экономически целесообразным способом, когда стоимость защитных средств и мероприятий не превышает размер ожидаемого ущерба. Значит, с чем-то приходится мириться и защищаться следует только от того, с чем смириться никак нельзя. Иногда таким недопустимым ущербом является нанесение вреда здоровью людей или состоянию окружающей среды, но чаще порог неприемлемости имеет материальное (денежное) выражение, а целью защиты информации становится уменьшение размеров ущерба до допустимых значений.


Применение объектно-ориентированного подхода к рассмотрению защищаемых систем


Попытаемся применить объектно-ориентированный подход к вопросам информационной безопасности.

Проблема обеспечения информационной безопасности - комплексная, защищать приходится сложные системы, и сами защитные средства тоже сложны, поэтому нам понадобятся все введенные понятия. Начнем с понятия грани.

Фактически три грани уже были введены: это доступность, целостность и конфиденциальность. Их можно рассматривать относительно независимо, и считается, что если все они обеспечены, то обеспечена и ИБ в целом (то есть субъектам информационных отношений не будет нанесен неприемлемый ущерб).

Таким образом, мы структурировали нашу цель. Теперь нужно структурировать средства ее достижения. Введем следующие грани:

законодательные меры обеспечения информационной безопасности;

административные меры (приказы и другие действия руководства организаций, связанных с защищаемыми информационными системами);

процедурные меры (меры безопасности, ориентированные на людей);

программно-технические меры.

В дальнейшей части курса мы поясним подробнее, что понимается под каждой из выделенных граней. Здесь же отметим, что, в принципе, их можно рассматривать и как результат варьирования уровня детализации (по этой причине мы будем употреблять словосочетания "законодательный уровень", "процедурный уровень" и т.п.). Законы и нормативные акты ориентированы на всех субъектов информационных отношений независимо от их организационной принадлежности (это могут быть как юридические, так и физические лица) в пределах страны (международные конвенции имеют даже более широкую область действия), административные меры - на всех субъектов в пределах организации, процедурные - на отдельных людей (или небольшие категории субъектов), программно-технические - на оборудование и программное обеспечение. При такой трактовке в переходе с уровня на уровень можно усмотреть применение наследования (каждый следующий уровень не отменяет, а дополняет предыдущий), а также полиморфизма (субъекты выступают сразу в нескольких ипостасях - например, как инициаторы административных мер и как обычные пользователи, обязанные этим мерам подчиняться).


Очевидно, для всех выделенных, относительно независимых граней действует принцип инкапсуляции (это и значит, что грани "относительно независимы"). Более того, эти две совокупности граней можно назвать ортогональными, поскольку для фиксированной грани в одной совокупности (например, доступности) грани в другой совокупности должны пробегать все множество возможных значений (нужно рассмотреть законодательные, административные, процедурные и программно-технические меры). Ортогональных совокупностей не должно быть много; думается, двух совокупностей с числом элементов, соответственно, 3 и 4 уже достаточно, так как они дают 12 комбинаций.

Продемонстрируем теперь, как можно рассматривать защищаемую ИС, варьируя уровень детализации.

Пусть интересы субъектов информационных отношений концентрируются вокруг ИС некой организации, располагающей двумя территориально разнесенными производственными площадками, на каждой из которых есть серверы, обслуживающие своих и внешних пользователей, а также пользователи, нуждающиеся во внутренних и внешних сервисах. Одна из площадок оборудована внешним подключением (то есть имеет выход в Internet).

При взгляде с нулевым уровнем детализации мы увидим лишь то, что у организации есть информационная система (см. рис. 2.0).



Рис. 2.0. ИС при рассмотрении с уровнем детализации 0.

Подобная точка зрения может показаться несостоятельной, но это не так. Уже здесь необходимо учесть законы, применимые к организациям, располагающим информационными системами. Возможно, какую-либо информацию нельзя хранить и обрабатывать на компьютерах, если ИС не была аттестована на соответствие определенным требованиям. На административном уровне могут быть декларированы цели, ради которых создавалась ИС, общие правила закупок, внедрения новых компонентов, эксплуатации и т.п. На процедурном уровне нужно определить требования к физической безопасности ИС и пути их выполнения, правила противопожарной безопасности и т.п. На программно-техническом уровне могут быть определены предпочтительные аппаратно-программные платформы и т.п.



По каким критериям проводить декомпозицию ИС - в значительной степени дело вкуса. Будем считать, что на первом уровне детализации делаются видимыми сервисы и пользователи, точнее, разделение на клиентскую и серверную часть (рис. 2.1).

 

ИС организации:

Сервисы (без конкретизации)

 

 

Пользователи (без конкретизации)
 


Рис. 2.1. ИС при рассмотрении с уровнем детализации 1.

На этом уровне следует сформулировать требования к сервисам (к самому их наличию, к доступности, целостности и конфиденциальности предоставляемых информационных услуг), изложить способы выполнения этих требований, определить общие правила поведения пользователей, необходимый уровень их предварительной подготовки, методы контроля их поведения, порядок поощрения и наказания и т.п. Могут быть сформулированы требования и предпочтения по отношению к серверным и клиентским платформам.

На втором уровне детализации мы увидим следующее (см. рис. 2.2).



Рис. 2.2. ИС при рассмотрении с уровнем детализации 2.

На этом уровне нас все еще не интересует внутренняя структура ИС организации, равно как и детали Internet. Констатируется только существование связи между этими сетями, наличие в них пользователей, а также предоставляемых и внутренних сервисов. Что это за сервисы, пока неважно.

Находясь на уровне детализации 2, мы должны учитывать законы, применимые к организациям, ИС которых снабжены внешними подключениями. Речь идет о допустимости такого подключения, о его защите, об ответственности пользователей, обращающихся к внешним сервисам, и об ответственности организаций, открывающих свои сервисы для внешнего доступа. Конкретизация аналогичной направленности, с учетом наличия внешнего подключения, должна быть выполнена на административном, процедурном и программно-техническом уровнях.

Обратим внимание на то, что контейнер (в смысле компонентной объектной среды) "ИС организации" задает границы контролируемой зоны, в пределах которых организация проводит определенную политику.Internet живет по другим правилам, которые организация должна принимать, как данность.

Увеличивая уровень детализации, можно разглядеть две разнесенные производственные площадки и каналы связи между ними, распределение сервисов и пользователей по этим площадкам и средства обеспечения безопасности внутренних коммуникаций, специфику отдельных сервисов, разные категории пользователей и т.п. Мы, однако, на этом остановимся.


Программа безопасности


После того, как сформулирована политика безопасности, можно приступать к составлению программы ее реализации и собственно к реа­лизации.

Чтобы понять и реализовать какую-либо программу, ее нужно структурировать по уровням, обычно в соответствии со структурой организации. В простейшем и самом распространенном случае достаточно двух уровней — верхнего, или центрального, который охватывает всю организацию, и нижнего, или служебного, который относится к отдельным услугам или группам однородных сервисов.

Программу верхнего уровня возглавляет лицо, отвечающее за информационную безопасность организации. У этой программы следующие главные цели:

управление рисками (оценка рисков, выбор эффективных средств защиты);

координация деятельности в области информационной безопасности, пополнение и распределение ресурсов;

стратегическое планирование;

контроль деятельности в области информационной безопасности.

В рамках программы верхнего уровня принимаются стратегические решения по обеспечению безопасности, оцениваются технологические новинки. Информационные технологии развиваются очень быстро, и необходимо иметь четкую политику отслеживания и внедрения новых средств.

Контроль деятельности в области безопасности имеет двустороннюю направленность. Во-первых, необходимо гарантировать, что действия организации не противоречат законам. При этом следует поддерживать контакты с внешними контролирующими организациями. Во-вторых, нужно постоянно отслеживать состояние безопасности внутри организации, реагировать на случаи нарушений и дорабатывать защитные меры с учетом изменения обстановки.

Следует подчеркнуть, что программа верхнего уровня должна занимать строго определенное место в деятельности организации, она должна официально приниматься и поддерживаться руководством, а также иметь определенный штат и бюджет.

Цель программы нижнего уровня — обеспечить надежную и экономичную защиту конкретного сервиса или группы однородных сервисов. На этом уровне решается, какие следует использовать механизмы защиты; закупаются и устанавливаются технические средства; выполняется повседневное администрирование; отслеживается состояние слабых мест и т.п. Обычно за программу нижнего уровня отвечают администраторы сервисов.



Программно-технические меры


Программно-технические меры, то есть меры, направленные на контроль компьютерных сущностей - оборудования, программ и/или данных, образуют последний и самый важный рубеж информационной безопасности.

На этом рубеже становятся очевидными не только позитивные, но и негативные последствия быстрого прогресса информационных технологий. Во-первых, дополнительные возможности появляются не только у специалистов по ИБ, но и у злоумышленников. Во-вторых, информационные системы все время модернизируются, перестраиваются, к ним добавляются недостаточно проверенные компоненты (в первую очередь программные), что затрудняет соблюдение режима безопасности.

Сложность современных корпоративных ИС, многочисленность и разнообразие угроз их безопасности можно наглядно представить, ознакомившись с информационной системой Верховного суда Российской Федерации.

Меры безопасности целесообразно разделить на следующие виды:

превентивные, препятствующие нарушениям ИБ;

меры обнаружения нарушений;

локализующие, сужающие зону воздействия нарушений;

меры по выявлению нарушителя;

меры восстановления режима безопасности.

В продуманной архитектуре безопасности все они должны присутствовать.

С практической точки зрения важными также являются следующие принципы архитектурной безопасности:

непрерывность защиты в пространстве и времени, невозможность миновать защитные средства;

следование признанным стандартам, использование апробированных решений;

иерархическая организация ИС с небольшим числом сущностей на каждом уровне;

усиление самого слабого звена;

невозможность перехода в небезопасное состояние;

минимизация привилегий;

разделение обязанностей;

эшелонированность обороны;

разнообразие защитных средств;

простота и управляемость информационной системы.

Центральным для программно-технического уровня является понятие сервиса безопасности. В число таких сервисов входят:

идентификация и аутентификация;

управление доступом;

протоколирование и аудит;

шифрование;

контроль целостности;


экранирование;

анализ защищенности;

обеспечение отказоустойчивости;

обеспечение безопасного восстановления;

туннелирование;

управление.

Эти сервисы должны функционировать в открытой сетевой среде с разнородными компонентами, то есть быть устойчивыми к соответствующим угрозам, а их применение должно быть удобным для пользователей и администраторов. Например, современные средства идентификации/аутентификации должны быть устойчивыми к пассивному и активному прослушиванию сети и поддерживать концепцию единого входа в сеть.

Выделим важнейшие моменты для каждого из перечисленных сервисов безопасности:

1.                       Предпочтительными являются криптографические методы

аутентификации, реализуемые программным или аппаратно-программным способом. Парольная защита стала анахронизмом, биометрические методы нуждаются в дальнейшей проверке в сетевой среде.

2.                       В условиях, когда понятие доверенного программного обеспечения уходит в прошлое, становится анахронизмом и самая распространенная - произвольная (дискреционная) - модель управления доступом. В ее терминах невозможно даже объяснить, что такое "троянская" программа. В идеале при разграничении доступа должна учитываться семантика операций, но пока для этого есть только теоретическая база. Еще один важный момент - простота администрирования в условиях большого числа пользователей и ресурсов и непрерывных изменений конфигурации. Здесь может помочь ролевое управление.

Протоколирование и аудит должны быть всепроникающими и многоуровневыми, с фильтрацией данных при переходе на более высокий уровень. Это необходимое условие управляемости. Желательно применение средств активного аудита, однако нужно осознавать ограниченность их возможностей и рассматривать эти средства как один из рубежей эшелонированной обороны, причем не самый надежный.


Следует конфигурировать их таким образом, чтобы минимизировать число ложных тревог и не совершать опасных действий при автоматическом реагировании.

Все, что связано к криптографией, сложно не столько с технической, сколько с юридической точки зрения; для шифрования это верно вдвойне. Данный сервис является инфраструктурным, его реализации должны присутствовать на всех аппаратно-программных платформах и удовлетворять жестким требованиям не только к безопасности, но и к производительности. Пока же единственным доступным выходом является применение свободно распространяемого ПО.

Надежный контроль целостности также базируется на криптографических методах с аналогичными проблемами и методами их решения. Возможно, принятие Закона об электронной цифровой подписи изменит ситуацию к лучшему, будет расширен спектр реализаций. К счастью, к статической целостности есть и некриптографические подходы, основанные на использовании запоминающих устройств, данные на которых доступны только для чтения. Если в системе разделить статическую и динамическую составляющие и поместить первую в ПЗУ или на компакт-диск, можно в корне пресечь угрозы целостности. Разумно, например, записывать регистрационную информацию на устройства с однократной записью; тогда злоумышленник не сможет "замести следы".

Экранирование - идейно очень богатый сервис безопасности. Его реализации - это не только межсетевые экраны, но и ограничивающие интерфейсы, и виртуальные локальные сети. Экран инкапсулирует защищаемый объект и контролирует его внешнее представление. Современные межсетевые экраны достигли очень высокого уровня защищенности, удобства использования и администрирования; в сетевой среде они являются первым и весьма мощным рубежом обороны. Целесообразно применение всех видов МЭ - от персонального до внешнего корпоративного, а контролю подлежат действия как внешних, так и внутренних пользователей.

Анализ защищенности - это инструмент поддержки безопасности жизненного цикла. С активным аудитом его роднит эвристичность, необходимость практически непрерывного обновления базы знаний и роль не самого надежного, но необходимого защитного рубежа, на котором можно расположить свободно распространяемый продукт.



Обеспечение отказоустойчивости и безопасного восстановления - аспекты высокой доступности. При их реализации на первый план выходят архитектурные вопросы, в первую очередь - внесение в конфигурацию (как аппаратную, так и программную) определенной избыточности, с учетом возможных угроз и соответствующих зон поражения. Безопасное восстановление - действительно последний рубеж, требующий особого внимания, тщательности при проектировании, реализации и сопровождении.

Туннелирование - скромный, но необходимый элемент в списке сервисов безопасности. Он важен не столько сам по себе, сколько в комбинации с шифрованием и экранированием для реализации виртуальных частных сетей.

Управление - это инфраструктурный сервис. Безопасная система должна быть управляемой. Всегда должна быть возможность узнать, что на самом деле происходит в ИС (а в идеале - и получить прогноз развития ситуации). Возможно, наиболее практичным решением для большинства организаций является использование какого-либо свободно распространяемого каркаса с постепенным "навешиванием" на него собственных функций.

Миссия обеспечения информационной безопасности трудна, во многих случаях невыполнима, но всегда благородна

[1]

На самостоятельное изучение

[2]

В основном на самостоятельное изучение


Программное обеспечение промежуточного слоя


С помощью программного обеспечения промежуточного слоя (ПО ПС) можно для произвольных прикладных сервисов добиться высокой "живучести" с полностью прозрачным для пользователей переключением на резервные мощности.

О возможностях и свойствах ПО промежуточного слоя можно прочитать в статье Ф. Бернстайна "Middleware: модель сервисов распределенной системы" (Jet Info, 1997, 11).

Перечислим основные достоинства ПО ПС, существенные для обеспечения высокой доступности.

ПО ПС уменьшает сложность создания распределенных систем. Подобное ПО берет на себя часть функций, которые в локальном случае выполняют операционные системы;

ПО ПС берет на себя маршрутизацию запросов, позволяя тем самым обеспечить "живучесть" прозрачным для пользователей образом;

ПО ПС осуществляет балансировку загрузки вычислительных мощностей, что также способствует повышению доступности данных;

ПО ПС в состоянии осуществлять тиражирование любой информации, а не только содержимого баз данных. Следовательно, любое приложение можно сделать устойчивым к отказам серверов;

ПО ПС в состоянии отслеживать состояние приложений и при необходимости тиражировать и перезапускать программы, что гарантирует "живучесть" программных систем;

ПО ПС дает возможность прозрачным для пользователей образом выполнять переконфигурирование (и, в частности, наращивание) серверных компонентов, что позволяет масштабировать систему, сохраняя инвестиции в прикладные системы. Стабильность прикладных систем - важный фактор повышения доступности данных.

Ранее мы упоминали о достоинствах использования ПО ПС в рамках межсетевых экранов, которые в таком случае становятся элементом обеспечения отказоустойчивости предоставляемых информационных сервисов.



Реагирование на нарушения режима безопасности


Программа безопасности, принятая организацией, должна предусматривать набор оперативных мероприятий, направленных на обнаружение и нейтрализацию нарушений режима информационной безопасности. Важно, чтобы в подобных случаях последовательность действий была спланирована заранее, поскольку меры нужно принимать срочные и скоординированные.

Реакция на нарушения режима безопасности преследует три главные цели:

локализация инцидента и уменьшение наносимого вреда;

прослеживание нарушителя;

недопущение повторных нарушений.

В организации должен быть человек, доступный 24 часа в сутки (лично, по телефону, пейджеру или электронной почте), отвечающий за реакцию на нарушения. Все должны знать координаты этого человека и обращаться к нему при первых признаках опасности. В общем, нужно действовать, как при пожаре: знать, куда звонить, и что делать до приезда пожарной команды.

Важность быстрой и скоординированной реакции можно продемонстрировать на следующем примере. Пусть локальная сеть предприятия состоит из двух сегментов, администрируемых разными людьми. Пусть, далее, в один из сегментов был внесен вирус. Почти наверняка через несколько минут (или, в крайнем случае, несколько десятков минут) вирус распространится и на другой сегмент. Значит, меры нужны немедленные. Далее, вычищать вирус нужно одновременно в обоих сегментах; в противном случае сегмент, вычищенный первым, заразится от другого, а затем вирус вернется и во второй сегмент.

Нередко требование локализации инцидента и уменьшения наносимого вреда вступает в конфликт с желанием проследить нарушителя. В политике безопасности организации должны быть заранее расставлены приоритеты. Поскольку, как показывает практика, на успешное прослеживание не так уж много шансов, на наш взгляд, в первую очередь следует заботиться об уменьшении ущерба.

Для прослеживания нарушителя нужно заранее выяснить контактные координаты поставщика сетевых услуг и договориться с ним о самой возможности и порядке выполнения соответствующих действий. Более подробно данная тема освещена в статье Н. Браунли и Э. Гатмэна "Как реагировать на нарушения информационной безопасности (RFC 2350, BCP 21)" (Jet Info, 2000, 5).

Для недопущения повторных нарушений необходимо анализировать каждый инцидент, выявлять причины, накапливать статистику. Каковы источники вредоносного ПО? Какие пользователи имеют обыкновение выбирать слабые пароли? На подобные вопросы и должны дать ответ результаты анализа.

Необходимо отслеживать появление новых уязвимостей и как можно оперативнее ликвидировать ассоциированные с ними окна опасности. Кто-то в организации должен курировать этот процесс, принимать краткосрочные меры и корректировать программу безопасности для принятия долгосрочных мер.



Ролевое управление доступом


При большом количестве пользователей традиционные подсистемы управления доступом становятся крайне сложными для администрирования. Число связей в них пропорционально произведению количества пользователей на количество объектов. Необходимы решения в объектно-ориентированном стиле, способные эту сложность понизить.

Таким решением является ролевое управление доступом (РУД). Суть его в том, что между пользователями и их привилегиями появляются промежуточные сущности - роли. Для каждого пользователя одновременно могут быть активными несколько ролей, каждая из которых дает ему определенные права (см. рис. 10.2).

Рис. 10.2. Пользователи, объекты и роли.

Ролевой доступ нейтрален по отношению к конкретным видам прав и способам их проверки; его можно рассматривать как объектно-ориентированный каркас, облегчающий администрирование, поскольку он позволяет сделать подсистему разграничения доступа управляемой при сколь угодно большом числе пользователей, прежде всего за счет установления между ролями связей, аналогичных наследованию в объектно-ориентированных системах. Кроме того, ролей должно быть значительно меньше, чем пользователей. В результате число администрируемых связей становится пропорциональным сумме (а не произведению) количества пользователей и объектов, что по порядку величины уменьшить уже невозможно.

Ролевой доступ развивается более 10 лет (сама идея ролей, разумеется, значительно старше) как на уровне операционных систем, так и в рамках СУБД и других информационных сервисов. В частности, существуют реализации ролевого доступа для Web-серверов.

В 2001 году Национальный институт стандартов и технологий США предложил проект стандарта ролевого управления доступом (см. http://csrc.nist.gov/rbac/), основные положения которого мы и рассмотрим.

Ролевое управление доступом оперирует следующими основными понятиями:

пользователь (человек, интеллектуальный автономный агент и т.п.);

сеанс работы пользователя;

роль (обычно определяется в соответствии с организационной структурой);


объект (сущность, доступ к которой разграничивается; например, файл ОС или таблица СУБД);

операция (зависит от объекта; для файлов ОС - чтение, запись, выполнение и т.п.; для таблиц СУБД - вставка, удаление и т.п., для прикладных объектов операции могут быть более сложными);

право доступа (разрешение выполнять определенные операции над определенными объектами).

Ролям приписываются пользователи и права доступа; можно считать, что они (роли) именуют отношения "многие ко многим" между пользователями и правами. Роли могут быть приписаны многие пользователи; один пользователь может быть приписан нескольким ролям. Во время сеанса работы пользователя активизируется подмножество ролей, которым он приписан, в результате чего он становится обладателем объединения прав, приписанных активным ролям. Одновременно пользователь может открыть несколько сеансов.

Между ролями может быть определено отношение частичного порядка, называемое наследованием. Если роль r2 является наследницей r1, то все права r1 приписываются r2, а все пользователи r2 приписываются r1. Очевидно, что наследование ролей

соответствует наследованию классов в объектно-ориентированном программировании, только правам доступа соответствуют методы классов, а пользователям - объекты (экземпляры) классов.

Отношение наследования является иерархическим, причем права доступа и пользователи распространяются по уровням иерархии навстречу друг другу. В общем случае наследование является множественным, то есть у одной роли может быть несколько предшественниц (и, естественно, несколько наследниц, которых мы будем называть также преемницами).

Можно представить себе формирование иерархии ролей, начиная с минимума прав (и максимума пользователей), приписываемых роли "сотрудник", с постепенным уточнением состава пользователей и добавлением прав (роли "системный администратор", "бухгалтер" и т.п.), вплоть до роли "руководитель" (что, впрочем, не значит, что руководителю предоставляются неограниченные права; как и другим ролям, в соответствии с принципом минимизации привилегий, этой роли целесообразно разрешить только то, что необходимо для выполнения служебных обязанностей).


Фрагмент подобной иерархии ролей показан на рис. 10.3.



Рис. 10.3. Фрагмент иерархии ролей.

Для реализации еще одного упоминавшегося ранее важного принципа информационной безопасности вводится понятие разделения обязанностей, причем в двух видах: статическом и динамическом.

Статическое разделение обязанностей налагает ограничения на приписывание пользователей ролям. В простейшем случае членство в некоторой роли запрещает приписывание пользователя определенному множеству других ролей. В общем случае данное ограничение задается как пара "множество ролей - число" (где множество состоит, по крайней мере, из двух ролей, а число должно быть больше 1), так что никакой пользователь не может быть приписан указанному (или большему) числу ролей из заданного множества. Например, может существовать пять бухгалтерских ролей, но политика безопасности допускает членство не более чем в двух таких ролях (здесь число=3).

При наличии наследования ролей ограничение приобретает несколько более сложный вид, но суть остается простой: при проверке членства в ролях нужно учитывать приписывание пользователей ролям-наследницам.

Динамическое разделение обязанностей отличается от статического только тем, что рассматриваются роли, одновременно активные (быть может, в разных сеансах) для данного пользователя (а не те, которым пользователь статически приписан). Например, один пользователь может играть роль и кассира, и контролера, но не одновременно; чтобы стать контролером, он должен сначала закрыть кассу. Тем самым реализуется так называемое временное ограничение доверия, являющееся аспектом минимизации привилегий.

Рассматриваемый проект стандарта содержит спецификации трех категорий функций, необходимых для администрирования РУД:

1.                       Административные функции (создание и сопровождение ролей и других атрибутов ролевого доступа): создать/удалить роль/пользователя, приписать пользователя/право роли или ликвидировать существующую ассоциацию, создать/удалить отношение наследования между существующими ролями, создать новую роль и сделать ее наследницей/предшественницей существующей роли, создать/удалить ограничения для статического/динамического разделения обязанностей.



2.                       Вспомогательные функции (обслуживание сеансов работы пользователей): открыть сеанс работы пользователя с активацией подразумеваемого набора ролей; активировать новую роль, деактивировать роль; проверить правомерность доступа.

3.                       Информационные функции (получение сведений о текущей конфигурации с учетом отношения наследования). Здесь проводится разделение на обязательные и необязательные функции. К числу первых принадлежат получение списка пользователей, приписанных роли, и списка ролей, которым приписан пользователь.

Все остальные функции отнесены к разряду необязательных. Это получение информации о правах, приписанных роли, о правах заданного пользователя (которыми он обладает как член множества ролей), об активных в данный момент сеанса ролях и правах, об операциях, которые роль/пользователь правомочны совершить над заданным объектом, о статическом/динамическом разделении обязанностей.

Можно надеяться, что предлагаемый стандарт поможет сформировать единую терминологию и, что более важно, позволит оценивать РУД-продукты с единых позиций, по единой шкале.


Руководящие документы Гостехкомиссии России


В частности, начиная с 2004 г. по решению Госстандарта в России начинает действовать стандарт ГОСТ Р ИСО/МЭК 15408-2002 "Информационные технологии. Методы и средства обеспечения безопасности. Критерии оценки безопасности информационных технологий", содержащий полный аутентичный текст международного стандарта ИСО/МЭК 15408-99. Определенный опыт практического применения этого стандарта уже накоплен за рубежом, и этот опыт необходимо осваивать. В соответствии с Постановлением Правительства "О лицензировании деятельности в области защиты конфиденциальной информации" деятельность по защите конфиденциальной информации подлежит лицензированию, а государственным органом по лицензированию является Гостехкомиссия России. При этом одним из условий лицензирования является наличие квалифицированных специалистов в этой области. Поэтому в проекте участвует Государственный научно-исследовательский испытательный институт проблем технической защиты информации Гостехкомиссии России

Гостехкомиссия России ведет весьма активную нормотворческую деятельность, выпуская Руководящие документы (РД), играющие роль национальных оценочных стандартов в области информационной безопасности. В качестве стратегического направления Гостехкомиссия России выбрала ориентацию на "Общие критерии", что можно только приветствовать.

В своем обзоре мы рассмотрим два важных, хотя и не новых, Руководящих документа - Классификацию автоматизированных систем (АС) по уровню защищенности от несанкционированного доступа (НСД) и аналогичную Классификацию межсетевых экранов

(МЭ).

Согласно первому из них, устанавливается девять классов защищенности АС от НСД к информации. Каждый класс характеризуется определенной минимальной совокупностью требований по защите. Классы подразделяются на три группы, отличающиеся особенностями обработки информации в АС.

В пределах каждой группы соблюдается иерархия требований по защите в зависимости от ценности (конфиденциальности) информации и, следовательно, иерархия классов защищенности АС.


Третья группа классифицирует АС, в которых работает один пользователь, имеющий доступ ко всей информации АС, размещенной на носителях одного уровня конфиденциальности. Группа содержит два класса - 3Б и 3А.

Вторая группа классифицирует АС, в которых пользователи имеют одинаковые права доступа (полномочия) ко всей информации АС, обрабатываемой и (или) хранящейся на носителях различного уровня конфиденциальности.

Группа содержит два класса - 2Б и 2А.

Первая группа классифицирует многопользовательские АС, в которых одновременно обрабатывается и (или) хранится информация разных уровней конфиденциальности и не все пользователи имеют право доступа ко всей информации АС. Группа содержит пять классов - 1Д, 1Г, 1В, 1Б и 1А.

Сведем в таблицу требования ко всем девяти классам защищенности АС.

По существу перед нами - минимум требований, которым необходимо следовать, чтобы обеспечить конфиденциальность информации. Целостность представлена отдельной подсистемой (номер 4), но непосредственно к интересующему нас предмету имеет отношение только пункт 4.1. Доступность (точнее, восстановление) предусмотрено только для самих средств защиты.

Переходя к рассмотрению второго РД Гостехкомиссии России - Классификации межсетевых экранов - укажем, что данный РД представляется нам принципиально важным, поскольку в нем идет речь не о целостном продукте или системе, а об отдельном сервисе безопасности, обеспечивающем межсетевое разграничение доступа.

Данный РД важен не столько содержанием, сколько самим фактом своего существования.

Основным критерием классификации МЭ служит протокольный уровень (в соответствии с эталонной семиуровневой моделью), на котором осуществляется фильтрация информации. Это понятно: чем выше уровень, тем больше информации на нем доступно и, следовательно, тем более тонкую и надежную фильтрацию можно реализовать.

Значительное внимание в РД уделено собственной безопасности служб обеспечения защиты и вопросам согласованного администрирования распределенных конфигураций.



Табл. 5.3. Требования к защищенности автоматизированных систем Подсистемы и требования Классы

Подсистемы и требования

Классы



















 
1. Подсистема управления доступом 1.1. Идентификация, проверка подлинности и контроль доступа субъектов: в систему;

+

+

+

+

+

+

+

+

+

 
к терминалам, ЭВМ, узлам сети ЭВМ, каналам связи, внешним устройствам ЭВМ;

-

-

-

+

-

+

+

+

+

 
к программам;

-

-

-

+

-

+

+

+

+

 
к томам, каталогам, файлам, записям, полям записей.

-

-

-

+

-

+

+

+

+

 
1.2. Управление потоками информации

-

-

-

+

-

-

+

+

+

 
2. Подсистема регистрации и учета 2.1. Регистрация и учет: входа/выхода субъектов доступа в/из системы (узла сети);

+

+

+

+

+

+

+

+

+

 
выдачи печатных (графических) выходных документов;

-

+

-

+

-

+

+

+

+

 
запуска/завершения программ и процессов (заданий, задач);

-

-

-

+

-

+

+

+

+

 
доступа программ субъектов доступа к терминалам, ЭВМ, узлам сети ЭВМ, каналам связи, внешним устройствам ЭВМ, программам, томам, каталогам, файлам, записям, полям записей;

-

-

-

+

-

+

+

+

+

 
изменения полномочий субъектов доступа;

-

-

-

-

-

-

+

+

+

 
создаваемых защищаемых объектов доступа.

-

-

-

+

-

+

+

+

+

 
2.2. Учет носителей информации.

+

+

+

+

+

+

+

+

+

 
2.3. Очистка (обнуление, обезличивание) освобождаемых областей оперативной памяти ЭВМ и внешних накопителей.

-

+

-

+

-

+

+

+

+

 
2.4. Сигнализация попыток нарушения защиты.

-

-

-

-

-

-

+

+

+

 
3. Криптографическая подсистема 3.1. Шифрование конфиденциальной информации.

-

-

-

+

-

-

-

+

+

 
3.2. Шифрование информации, принадлежащей различным субъектам доступа (группам субъектов) на разных ключах.

-

-

-

-

-

-

-

-

+

 
3.3. Использование аттестованных (сертифицированных) криптографических средств.

-

-

-

+

-

-

-

+

+

 
4. Подсистема обеспечения целостности 4.1. Обеспечение целостности программных средств и обрабатываемой информации

+

+

+

+

+

+

+

+

+

 
4.2. Физическая охрана средств вычислительной техники и носителей информации.

+

+

+

+

+

+

+

+

+

 
4.3. Наличие администратора (службы защиты) информации в АС.

-

-

-

+

-

-

+

+

+

 
4.4. Периодическое тестирование СЗИ НСД.

+

+

+

+

+

+

+

+

+

 
4.5. Наличие средств восстановления СЗИ НСД.

+

+

+

+

+

+

+

+

+

 
4.6. Использование сертифицированных средств защиты.

-

+

-

+

-

-

+

+

+

 
<


"-" нет требований к данному классу;

"+" есть требования к данному классу;

" СЗИ НСД" система защиты информации от несанкционированного доступа






Сервер аутентификации Kerberos


Kerberos - это программный продукт, разработанный в середине 1980-х годов в Массачусетском технологическом институте и претерпевший с тех пор ряд принципиальных изменений. Клиентские компоненты Kerberos присутствуют в большинстве современных операционных систем.

Kerberos предназначен для решения следующей задачи. Имеется открытая (незащищенная) сеть, в узлах которой сосредоточены субъекты - пользователи, а также клиентские и серверные программные системы. Каждый субъект обладает секретным ключом. Чтобы субъект C мог доказать свою подлинность субъекту S (без этого S не станет обслуживать C), он должен не только назвать себя, но и продемонстрировать знание секретного ключа. C не может просто послать S свой секретный ключ, во-первых, потому, что сеть открыта (доступна для пассивного и активного прослушивания), а, во-вторых, потому, что S не знает (и не должен знать) секретный ключ C. Требуется менее прямолинейный способ демонстрации знания секретного ключа.

Система Kerberos представляет собой доверенную третью сторону (то есть сторону, которой доверяют все), владеющую секретными ключами обслуживаемых субъектов и помогающую им в попарной проверке подлинности.

Чтобы с помощью Kerberos получить доступ к S (обычно это сервер), C (как правило - клиент) посылает Kerberos запрос, содержащий сведения о нем (клиенте) и о запрашиваемой услуге. В ответ Kerberos возвращает так называемый билет, зашифрованный секретным ключом сервера, и копию части информации из билета, зашифрованную секретным ключом клиента. Клиент должен расшифровать вторую порцию данных и переслать ее вместе с билетом серверу. Сервер, расшифровав билет, может сравнить его содержимое с дополнительной информацией, присланной клиентом. Совпадение свидетельствует о том, что клиент смог расшифровать предназначенные ему данные (ведь содержимое билета никому, кроме сервера и Kerberos, недоступно), то есть продемонстрировал знание секретного ключа. Значит, клиент - именно тот, за кого себя выдает. Подчеркнем, что секретные ключи в процессе проверки подлинности не передавались по сети (даже в зашифрованном виде) - они только использовались для шифрования.
Как организован первоначальный обмен ключами между Kerberos и субъектами и как субъекты хранят свои секретные ключи - вопрос отдельный.

Проиллюстрируем описанную процедуру.



Рис. 10.1. Проверка сервером S подлинности клиента C.

Здесь c и s - сведения (например, имя), соответственно, о клиенте и сервере, d1 и d2 - дополнительная (по отношению к билету) информация, Tc.s - билет для клиента C на обслуживание у сервера S, Kc и Ks - секретные ключи клиента и сервера, {info}K - информация info, зашифрованная ключом K.

Приведенная схема - крайне упрощенная версия реальной процедуры проверки подлинности. Более подробное рассмотрение системы Kerberos можно найти, например, в статье В. Галатенко "Сервер аутентификации Kerberos (Jet Info, 1996, 12-13). Нам же важно отметить, что Kerberos не только устойчив к сетевым угрозам, но и поддерживает концепцию единого входа в сеть.


Сетевые механизмы безопасности


Для реализации сервисов (функций) безопасности могут использоваться следующие механизмы и их комбинации:

шифрование;

электронная цифровая подпись;

механизмы управления доступом. Могут располагаться на любой из участвующих в общении сторон или в промежуточной точке;

механизмы контроля целостности данных. В рекомендациях X.800 различаются два аспекта целостности: целостность отдельного сообщения или поля информации и целостность потока сообщений или полей информации. Для проверки целостности потока сообщений (то есть для защиты от кражи, переупорядочивания, дублирования и вставки сообщений) используются порядковые номера, временные штампы, криптографическое связывание или иные аналогичные приемы;

механизмы аутентификации. Согласно рекомендациям X.800, аутентификация может достигаться за счет использования паролей, личных карточек или иных устройств аналогичного назначения, криптографических методов, устройств измерения и анализа биометрических характеристик;

механизмы дополнения трафика;

механизмы управления маршрутизацией. Маршруты могут выбираться статически или динамически. Оконечная система, зафиксировав неоднократные атаки на определенном маршруте, может отказаться от его использования. На выбор маршрута способна повлиять метка безопасности, ассоциированная с передаваемыми данными;

механизмы нотаризации. Служат для заверения таких коммуникационных характеристик, как целостность, время, личности отправителя и получателей. Заверение обеспечивается надежной третьей стороной, обладающей достаточной информацией. Обычно нотаризация опирается на механизм электронной подписи.

В следующей таблице сведены сервисы (функции) и механизмы безопасности. Таблица показывает, какие механизмы (по отдельности или в комбинации с другими) могут использоваться для реализации той или иной функции.

Табл. 5.2. Взаимосвязь функций и механизмов безопасности Функции Механизмы

Функции

Механизмы

Шифрование

Электронная подпись

Управление доступом

Целостность

Аутентификация

Дополнение трафика

Управление маршрутизацией

Нотаризация

Аутентификация партнеров

+

+

-

-

+

-

-

-

Аутентификация источника

+

+

-

-

-

-

-

-

Управление доступом

-

-

+

-

-

-

-

-

Конфиденциальность

+

-

+

-

-

-

+

-

Избирательная конфиденциальность

+

-

-

-

-

-

-

-

Конфиденциальность трафика

+

-

-

-

-

+

+

-

Целостность соединения

+

-

-

+

-

-

-

-

Целостность вне соединения

+

+

-

+

-

-

-

-

Неотказуемость

-

+

-

+

-

-

-

+

<
"+" механизм пригоден для реализации данной функцию безопасности;

"-" механизм не преднозначен для реализации данной функции безопасности.


Сетевые сервисы безопасности


Следуя скорее исторической, чем предметной логике, мы переходим к рассмотрению технической спецификации X.800, появившейся немногим позднее "Оранжевой книги", но весьма полно и глубоко трактующей вопросы информационной безопасности распределенных систем.

Рекомендации X.800 - документ довольно обширный. Мы остановимся на специфических сетевых функциях (сервисах) безопасности, а также на необходимых для их реализации защитных механизмах.

Выделяют следующие сервисы безопасности и исполняемые ими роли:

Аутентификация.

Данный сервис обеспечивает проверку подлинности партнеров по общению и проверку подлинности источника данных. Аутентификация партнеров по общению

используется при установлении соединения и, быть может, периодически во время сеанса. Она служит для предотвращения таких угроз, как маскарад и повтор предыдущего сеанса связи. Аутентификация бывает односторонней (обычно клиент доказывает свою подлинность серверу) и двусторонней (взаимной).

Управление доступом. Обеспечивает защиту от несанкционированного использования ресурсов, доступных по сети.

Конфиденциальность данных. Обеспечивает защиту от несанкционированного получения информации. Отдельно упомянем конфиденциальность трафика (это защита информации, которую можно получить, анализируя сетевые потоки данных).

Целостность данных подразделяется на подвиды в зависимости от того, какой тип общения используют партнеры - с установлением соединения или без него, защищаются ли все данные или только отдельные поля, обеспечивается ли восстановление в случае нарушения целостности.

Неотказуемость

(невозможность отказаться от совершенных действий) обеспечивает два вида услуг: неотказуемость с подтверждением подлинности источника данных и неотказуемость с подтверждением доставки. Побочным продуктом неотказуемости является аутентификация

источника данных.

В следующей таблице указаны уровни эталонной семиуровневой модели OSI, на которых могут быть реализованы функции безопасности. Отметим, что прикладные процессы, в принципе, могут взять на себя поддержку всех защитных сервисов.


Табл. 5.1. Распределение функций безопасности по уровням эталонной семиуровневой модели OSI Функции безопасности Уровень





Функции безопасности



Уровень





1



2



3



4



5



6



7



Аутентификация



-



-



+



+



-



-



+



Управление доступом



-



-



+



+



-



-



+



Конфиденциальность соединения



+



+



+



+



-



+



+



Конфиденциальность вне соединения



-



+



+



+



-



+



+



Избирательная конфиденциальность



-



-



-



-



-



+



+



Конфиденциальность трафика



+



-



+



-



-



-



+



Целостность с восстановлением



-



-



-



+



-



-



+



Целостность без восстановления



-



-



+



+



-



-



+



Избирательная целостность



-



-



-



-



-



-



+



Целостность вне соединения



-



-



+



+



-



-



+



Неотказуемость



-



-



-



-



-



-



+

"+" данный уровень может предоставить функцию безопасности;

"-" данный уровень не подходит для предоставления функции безопасности.


Шифрование


Мы приступаем к рассмотрению криптографических сервисов безопасности, точнее, к изложению элементарных сведений, помогающих составить общее представление о компьютерной криптографии и ее месте в общей архитектуре информационных систем.

Криптография необходима для реализации, по крайней мере, трех сервисов безопасности:

шифрование;

контроль целостности;

аутентификация (этот сервис был рассмотрен нами ранее).

Шифрование - наиболее мощное средство обеспечения конфиденциальности. Во многих отношениях оно занимает центральное место среди программно-технических регуляторов безопасности, являясь основой реализации многих из них, и в то же время последним (а подчас и единственным) защитным рубежом. Например, для портативных компьютеров только шифрование позволяет обеспечить конфиденциальность данных даже в случае кражи.

В большинстве случаев и шифрование, и контроль целостности играют глубоко инфраструктурную роль, оставаясь прозрачными и для приложений, и для пользователей. Типичное место этих сервисов безопасности - на сетевом и транспортном уровнях реализации стека сетевых протоколов.

Различают два основных метода шифрования: симметричный и асимметричный. В первом из них один и тот же ключ (хранящийся в секрете) используется и для зашифрования, и для расшифрования

данных. Разработаны весьма эффективные (быстрые и надежные) методы симметричного шифрования. Существует и национальный стандарт на подобные методы - ГОСТ 28147-89 "Системы обработки информации. Защита криптографическая. Алгоритм криптографического преобразования".

Рис. 11.1 иллюстрирует использование симметричного шифрования. Для определенности мы будем вести речь о защите сообщений, хотя события могут развиваться не только в пространстве, но и во времени, когда зашифровываются и расшифровываются никуда не перемещающиеся файлы.

Рис. 11.1. Использование симметричного метода шифрования.

Основным недостатком симметричного шифрования является то, что секретный ключ должен быть известен и отправителю, и получателю.
С одной стороны, это создает новую проблему распространения ключей. С другой стороны, получатель на основании наличия зашифрованного и расшифрованного сообщения не может доказать, что он получил это сообщение от конкретного отправителя, поскольку такое же сообщение он мог сгенерировать самостоятельно.

В асимметричных методах используются два ключа. Один из них, несекретный (он может публиковаться вместе с другими открытыми сведениями о пользователе), применяется для шифрования, другой (секретный, известный только получателю) - для расшифрования. Самым популярным из асимметричных является метод RSA (Райвест, Шамир, Адлеман), основанный на операциях с большими (скажем, 100-значными) простыми числами и их произведениями.

Проиллюстрируем использование асимметричного шифрования (см. рис. 11.2).



Рис. 11.2. Использование асимметричного метода шифрования.

Существенным недостатком асимметричных методов шифрования является их низкое быстродействие, поэтому данные методы приходится сочетать с симметричными (асимметричные методы на 3 - 4 порядка медленнее). Так, для решения задачи эффективного шифрования с передачей секретного ключа, использованного отправителем, сообщение сначала симметрично зашифровывают случайным ключом, затем этот ключ зашифровывают открытым

асимметричным ключом получателя, после чего сообщение и ключ отправляются по сети.

Рис. 11.3 иллюстрирует эффективное шифрование, реализованное путем сочетания симметричного и асимметричного методов.

На рис. 11.4 показано расшифрование эффективно зашифрованного сообщения.

Отметим, что асимметричные методы позволили решить важную задачу совместной выработки секретных ключей (это существенно, если стороны не доверяют друг другу), обслуживающих сеанс взаимодействия, при изначальном отсутствии общих секретов. Для этого используется алгоритм Диффи-Хелмана.



Рис. 11.3. Эффективное шифрование сообщения.



Рис. 11.4. Расшифрование эффективно зашифрованного сообщения.

Определенное распространение получила разновидность симметричного шифрования, основанная на использовании составных ключей.


Идея состоит в том, что секретный ключ делится на две части, хранящиеся отдельно. Каждая часть сама по себе не позволяет выполнить расшифрование. Если у правоохранительных органов появляются подозрения относительно лица, использующего некоторый ключ, они могут в установленном порядке получить половинки ключа и дальше действовать обычным для симметричного расшифрования образом.

Порядок работы с составными ключами - хороший пример следования принципу разделения обязанностей. Он позволяет сочетать права на разного рода тайны (персональную, коммерческую) с возможностью эффективно следить за нарушителями закона, хотя, конечно, здесь очень много тонкостей и технического, и юридического плана.

Многие криптографические алгоритмы в качестве одного из параметров требуют псевдослучайное значение, в случае предсказуемости которого в алгоритме появляется уязвимость (подобное уязвимое место было обнаружено в некоторых вариантах Web-навигаторов). Генерация псевдослучайных последовательностей - важный аспект криптографии, на котором мы, однако, останавливаться не будем.

Более подробную информацию о компьютерной криптографии можно почерпнуть из статьи Г. Семенова "Не только шифрование, или Обзор криптотехнологий" (Jet Info, 2001, 3).


Синхронизация программы безопасности с жизненным циклом систем


Если синхронизировать программу безопасности нижнего уровня с жизненным циклом защищаемого сервиса, можно добиться большего эффекта с меньшими затратами. Программисты знают, что добавить новую возможность к уже готовой системе на порядок сложнее, чем изначально спроектировать и реализовать ее. То же справедливо и для информационной безопасности.

В жизненном цикле информационного сервиса можно выделить следующие этапы:

Инициация. На данном этапе выявляется необходимость в приобретении нового сервиса, документируется его предполагаемое назначение.

Закупка. На данном этапе составляются спецификации, прорабатываются варианты приобретения, выполняется собственно закупка.

Установка. Сервис устанавливается, конфигурируется, тестируется и вводится в эксплуатацию.

Эксплуатация. На данном этапе сервис не только работает и администрируется, но и подвергается модификациям.

Выведение из эксплуатации.

Происходит переход на новый сервис.

Рассмотрим действия, выполняемые на каждом из этапов, более подробно.

На этапе инициации оформляется понимание того, что необходимо приобрести новый или значительно модернизировать существующий сервис; определяется, какими характеристиками и какой функциональностью он должен обладать; оцениваются финансовые и иные ограничения.

С точки зрения безопасности важнейшим действием здесь является оценка критичности как самого сервиса, так и информации, которая с его помощью будет обрабатываться. Требуется сформулировать ответы на следующие вопросы:

какого рода информация предназначается для обслуживания новым сервисом?

каковы возможные последствия нарушения конфиденциальности, целостности и доступности этой информации?

каковы угрозы, по отношению к которым сервис и информация будут наиболее уязвимы?

есть ли какие-либо особенности нового сервиса (например, территориальная распределенность компонентов), требующие принятия специальных процедурных мер?

каковы характеристики персонала, имеющие отношение к безопасности (квалификация, благонадежность)?


каковы законодательные положения и внутренние правила, которым должен соответствовать новый сервис?

Результаты оценки критичности являются отправной точкой в составлении спецификаций. Кроме того, они определяют ту меру внимания, которую служба безопасности организации должна уделять новому сервису на последующих этапах его жизненного цикла.

Этап закупки – один из самых сложных. Нужно окончательно сформулировать требования к защитным средствам нового сервиса, к компании, которая может претендовать на роль поставщика, и к квалификации, которой должен обладать персонал, использующий или обслуживающий закупаемый продукт. Все эти сведения оформляются в виде спецификации, куда входят не только аппаратура и программы, но и документация, обслуживание, обучение персонала. Разумеется, особое внимание должно уделяться вопросам совместимости нового сервиса с существующей конфигурацией. Подчеркнем также, что нередко средства безопасности являются необязательными компонентами коммерческих продуктов, и нужно проследить, чтобы соответствующие пункты не выпали из спецификации.

Когда продукт закуплен, его необходимо установить. Несмотря на кажущуюся простоту, установка является очень ответственным делом. Во-первых, новый продукт следует сконфигурировать. Как правило, коммерческие продукты поставляются с отключенными средствами безопасности; их необходимо включить и должным образом настроить. Для большой организации, где много пользователей и данных, начальная настройка может стать весьма трудоемким и ответственным делом.

Во-вторых, новый сервис нуждается в процедурных регуляторах. Следует позаботиться о чистоте и охране помещения, о документах, регламентирующих использование сервиса, о подготовке планов на случай экстренных ситуаций, об организации обучения пользователей и т.п.

После принятия перечисленных мер необходимо провести тестирование. Его полнота и комплексность могут служить гарантией безопасности эксплуатации в штатном режиме.

Период эксплуатации — самый длительный и сложный.


С психологической точки зрения наибольшую опасность в это время представляют незначительные изменения в конфигурации сервиса, в поведении пользователей и администраторов. Если безопасность не поддерживать, она ослабевает. Пользователи не столь ревностно выполняют должностные инструкции, администраторы менее тщательно анализируют регистрационную информацию. То один, то другой пользователь получает дополнительные привилегии. Кажется, что в сущности ничего не изменилось; на самом же деле от былой безопасности не осталось и следа.

Для борьбы с эффектом медленных изменений приходится прибегать к периодическим проверкам безопасности сервиса. Разумеется, после значительных модификаций подобные проверки являются обязательными.

При выведении из эксплуатации затрагиваются аппаратно-программные компоненты сервиса и обрабатываемые им данные. Аппаратура продается, утилизируется или выбрасывается. Только в специфических случаях необходимо заботиться о физическом разрушении аппаратных компонентов, хранящих конфиденциальную информацию. Программы, вероятно, просто стираются, если иное не предусмотрено лицензионным соглашением.

При выведении данных из эксплуатации их обычно переносят на другую систему, архивируют, выбрасывают или уничтожают. Если архивирование производится с намерением впоследствии прочитать данные в другом месте, следует позаботиться об аппаратно-программной совместимости средств чтения и записи. Информационные технологии развиваются очень быстро, и через несколько лет устройств, способных прочитать старый носитель, может просто не оказаться. Если данные архивируются в зашифрованном виде, необходимо сохранить ключ и средства расшифровки. При архивировании и хранении архивной информации нельзя забывать о поддержании конфиденциальности данных.






Требования доверия безопасности


Установление доверия безопасности, согласно "Общим критериям", основывается на активном исследовании объекта оценки.

Форма представления требований доверия, в принципе, та же, что и для функциональных требований. Специфика состоит в том, что каждый элемент требований доверия принадлежит одному из трех типов:

действия разработчиков;

представление и содержание свидетельств;

действия оценщиков.

Всего в ОК 10 классов, 44 семейства, 93 компонента требований доверия безопасности. Перечислим классы:

разработка (требования для поэтапной детализации функций безопасности от краткой спецификации до реализации);

поддержка жизненного цикла (требования к модели жизненного цикла, включая порядок устранения недостатков и защиту среды разработки);

тестирование;

оценка уязвимостей (включая оценку стойкости функций безопасности);

поставка и эксплуатация;

управление конфигурацией;

руководства (требования к эксплуатационной документации);

поддержка доверия (для поддержки этапов жизненного цикла после сертификации);

оценка профиля защиты;

оценка задания по безопасности.

Применительно к требованиям доверия в "Общих критериях" сделана весьма полезная вещь, не реализованная, к сожалению, для функциональных требований. А именно, введены так называемые оценочные уровни доверия (их семь), содержащие осмысленные комбинации компонентов.

Оценочный уровень доверия 1 (начальный) предусматривает анализ функциональной спецификации, спецификации интерфейсов, эксплуатационной документации, а также независимое тестирование. Уровень применим, когда угрозы не рассматриваются как серьезные.

Оценочный уровень доверия 2, в дополнение к первому уровню, предусматривает наличие проекта верхнего уровня объекта оценки, выборочное независимое тестирование, анализ стойкости функций безопасности, поиск разработчиком явных уязвимых мест.

На третьем уровне ведется контроль среды разработки и управление конфигурацией объекта оценки.

На уровне 4 добавляются полная спецификация интерфейсов, проекты нижнего уровня, анализ подмножества реализации, применение неформальной модели политики безопасности,

независимый анализ уязвимых мест, автоматизация управления конфигурацией. Вероятно, это самый высокий уровень, которого можно достичь при существующей технологии программирования и приемлемых затратах.

Уровень 5, в дополнение к предыдущим, предусматривает применение формальной модели политики безопасности, полуформальных функциональной спецификации и проекта верхнего уровня с демонстрацией соответствия между ними. Необходимо проведение анализа скрытых каналов разработчиками и оценщиками.

На уровне 6 реализация должна быть представлена в структурированном виде. Анализ соответствия распространяется на проект нижнего уровня.

Оценочный уровень 7 (самый высокий) предусматривает формальную верификацию проекта объекта оценки. Он применим к ситуациям чрезвычайно высокого риска.

На этом мы заканчиваем краткий обзор "Общих критериев".



Туннелирование


На наш взгляд, туннелирование следует рассматривать как самостоятельный сервис безопасности. Его суть состоит в том, чтобы "упаковать" передаваемую порцию данных, вместе со служебными полями, в новый "конверт". В качестве синонимов термина "туннелирование" могут использоваться "конвертование" и

"обертывание".

Туннелирование может применяться для нескольких целей:

передачи через сеть пакетов, принадлежащих протоколу, который в данной сети не поддерживается (например, передача пакетов IPv6 через старые сети, поддерживающие только IPv4);

обеспечения слабой формы конфиденциальности (в первую очередь конфиденциальности трафика) за счет сокрытия истинных адресов и другой служебной информации;

обеспечения конфиденциальности и целостности передаваемых данных при использовании вместе с криптографическими сервисами.

Туннелирование может применяться как на сетевом, так и на прикладном уровнях. Например, стандартизовано туннелирование для IP и двойное конвертование для почты X.400.

На рис. 14.1 показан пример обертывания пакетов IPv6 в формат IPv4.

Рис. 14.1. Обертывание пакетов IPv6 в формат IPv4 с целью их туннелирования через сети IPv4.

Комбинация туннелирования и шифрования (наряду с необходимой криптографической инфраструктурой) на выделенных шлюзах и экранирования на маршрутизаторах поставщиков сетевых услуг (для разделения пространств "своих" и "чужих" сетевых адресов в духе виртуальных локальных сетей) позволяет реализовать такое важное в современных условиях защитное средство, как виртуальные частные сети. Подобные сети, наложенные обычно поверх Internet, существенно дешевле и гораздо безопаснее, чем собственные сети организации, построенные на выделенных каналах. Коммуникации на всем их протяжении физически защитить невозможно, поэтому лучше изначально исходить из предположения об их уязвимости и соответственно обеспечивать защиту. Современные протоколы, направленные на поддержку классов обслуживания, помогут гарантировать для виртуальных частных сетей заданную пропускную способность, величину задержек и т.п., ликвидируя тем самым единственное на сегодня реальное преимущество сетей собственных.

Рис. 14.2. Межсетевые экраны как точки реализации сервиса виртуальных частных сетей.

Концами туннелей, реализующих виртуальные частные сети, целесообразно сделать межсетевые экраны, обслуживающие подключение организаций к внешним сетям (см. рис. 14.2). В таком случае туннелирование и шифрование станут дополнительными преобразованиями, выполняемыми в процессе фильтрации сетевого трафика наряду с трансляцией адресов.

Концами туннелей, помимо корпоративных межсетевых экранов, могут быть мобильные компьютеры сотрудников (точнее, их персональные МЭ).



Управление доступом в Java-среде


Java - это объектно-ориентированная система программирования, поэтому и управление доступом в ней спроектировано и реализовано в объектном стиле. По этой причине рассмотреть Java-среду для нас очень важно. Подробно о Java-технологии и безопасности Java-среды рассказано в статье А. Таранова и В. Цишевского "Java в три года" (Jet Info, 1998, 11-12). С разрешения авторов далее используются ее фрагменты.

Прежде всего, остановимся на эволюции модели безопасности Java. В JDK 1.0 была предложена концепция "песочницы" (sandbox) - замкнутой среды, в которой выполняются потенциально ненадежные программы (апплеты, поступившие по сети). Программы, располагающиеся на локальном компьютере, считались абсолютно надежными, и им было доступно все, что доступно виртуальной Java-машине.

В число ограничений, налагаемых "песочницей", входит запрет на доступ к локальной файловой системе, на сетевое взаимодействие со всеми хостами, кроме источника апплета, и т.п. Независимо от уровня достигаемой при этом безопасности (а проблемы возникали и с разделением свой/чужой, и с определением источника апплета), наложенные ограничения следует признать слишком обременительными: возможности для содержательных действий у апплетов почти не остается.

Чтобы справиться с этой проблемой, в JDK 1.1 ввели деление источников (точнее, распространителей) апплетов на надежные и ненадежные (источник определялся по электронной подписи). Надежные апплеты приравнивались в правах к "родному" коду. Сделанное послабление решило проблемы тех, кому прав не хватало, но защита осталась неэшелонированной и, следовательно, неполной.

В JDK 1.2 сформировалась модель безопасности, используемая и в Java 2. От модели "песочницы" отказались. Оформились три основных понятия:

источник программы;

право и множество прав;

политика безопасности.

Источник программы определяется парой (URL, распространители программы). Последние задаются набором цифровых сертификатов.

Право - это абстрактное понятие, за которым, как и положено в объектной среде, стоят классы и объекты.
В большинстве случаев право определяется двумя цепочками символов - именем ресурса и действием. Например, в качестве ресурса может выступать файл, а в качестве действия - чтение. Важнейшим методом

"правовых" объектов является implies(). Он проверяет, следует ли одно право (запрашиваемое) из другого (имеющегося).

Политика безопасности задает соответствие между источником и правами поступивших из него программ (формально можно считать, что каждому источнику соответствует своя "песочница"). В JDK 1.2 "родные" программы не имеют каких-либо привилегий в плане безопасности, и политика по отношению к ним может быть любой. В результате получился традиционный для современных ОС и СУБД механизм прав доступа со следующими особенностями:

Java-программы выступают не от имени пользователя, их запустившего, а от имени источника программы. (Это весьма глубокая и прогрессивная трактовка, если ее правильно развить, см. следующий раздел);

нет понятия владельца ресурсов, который мог бы менять права; последние задаются исключительно политикой безопасности (формально можно считать, что владельцем всего является тот, кто формирует политику);

механизмы безопасности снабжены объектной оберткой.

Весьма важным понятием в модели безопасности JDK 1.2 является контекст выполнения. Когда виртуальная Java-машина проверяет права доступа объекта к системному ресурсу, она рассматривает не только текущий объект, но и предыдущие элементы стека вызовов. Доступ предоставляется только тогда, когда нужным правом обладают все объекты в стеке. Разработчики Java называют это реализацией принципа минимизации привилегий.

На первый взгляд, учет контекста представляется логичным. Нельзя допускать, чтобы вызов какого-либо метода расширял права доступа хотя бы по той причине, что доступ к системным ресурсам осуществляется не напрямую, а с помощью системных объектов, имеющих все права.

К сожалению, подобные доводы противоречат одному из основных принципов объектного подхода - принципу инкапсуляции.


Если объект A обращается к объекту B, он не может и не должен знать, как реализован B и какими ресурсами он пользуется для своих целей. Если A имеет право вызывать какой-либо метод B с некоторыми значениями аргументов, B обязан обслужить вызов. В противном случае при формировании политики безопасности придется учитывать возможный граф вызовов объектов, что, конечно же, нереально.

Разработчики Java осознавали эту проблему. Чтобы справиться с ней, они ввели понятие привилегированного интервала программы. При выполнении такого интервала контекст игнорируется. Привилегированная программа отвечает за себя, не интересуясь предысторией. Аналогом привилегированных программ являются файлы с битами переустановки идентификатора пользователя/группы в ОС Unix, что лишний раз подтверждает традиционность подхода, реализованного в JDK 1.2. Известны угрозы безопасности, которые привносят подобные файлы. Теперь это не лучшее средство ОС Unix перекочевало в Java.

Рассмотрим дисциплину контроля прав доступа более формально.

Класс AccessController (встроенный менеджер безопасности) предоставляет единый метод для проверки заданного права в текущем контексте - checkPermission (Permission). Это лучше (по причине параметризуемости), чем множество методов вида checkXXX, присутствующих в SecurityManager - динамически изменяемом менеджере безопасности из ранних версий JDK.

Пусть текущий контекст выполнения состоит из N стековых фреймов (верхний соответствует методу, вызвавшему checkPermission(p)). Метод checkPermission реализует следующий алгоритм (см. Листинг 10.1).

i = N;

while (i > 0) {

if (метод, породивший i-й фрейм, не имеет проверяемого

права) {

throw AccessControlException

} else if (i-й фрейм помечен как привилегированный) {

return;

}

i = i - 1;

};

// Выясним, есть ли проверяемое право у унаследованного контекста

inheritedContext.checkPermission (p);

Листинг 10.1. Алгоритм работы метода checkPermission класса AccessController.

Сначала в стеке ищется фрейм, не обладающий проверяемым правом.


Проверка производится до тех пор, пока либо не будет исчерпан стек, либо не встретится "привилегированный" фрейм, созданный в результате обращения к методу doPrivileged(PrivilegedAction) класса AccessController. Если при порождении текущего потока выполнения был сохранен контекст inheritedContext, проверяется и он. При положительном результате проверки метод checkPermission(p) возвращает управление, при отрицательном возникает исключительная ситуация AccessControlException.

Выбранный подход имеет один недостаток - тяжеловесность реализации. В частности, при порождении нового потока управления с ним приходится ассоциировать зафиксированный "родительский" контекст и, соответственно, проверять последний в процессе контроля прав доступа.

Отметим, что этот подход не распространяется на распределенный случай (хотя бы потому, что контекст имеет лишь локальный смысл, как, впрочем, и политика безопасности).

В целом средства управления доступом в JDK 1.2 можно оценить как "наполовину объектные". Реализация оформлена в виде интерфейсов и классов, однако по-прежнему разграничивается доступ к необъектным сущностям - ресурсам в традиционном понимании. Не учитывается семантика доступа. Имеют место и другие отмеченные выше концептуальные проблемы.


Управление персоналом


Управление персоналом начинается с приема нового сотрудника на работу и даже раньше - с составления описания должности. Уже на этом этапе желательно привлечение специалиста по информационной безопасности для определения компьютерных привилегий, ассоциируемых с должностью. Существует два общих принципа, которые следует иметь в виду:

разделение обязанностей;

минимизация привилегий.

Принцип разделения обязанностей предписывает так распределять роли и ответственность, чтобы один человек не мог нарушить критически важный для организации процесс. Например, нежелательна ситуация, когда крупные платежи от имени организации выполняет один человек. Надежнее поручить одному сотруднику оформлять заявки на подобные платежи, а другому - заверять эти заявки. Другой пример - процедурные ограничения действий суперпользователя. Можно искусственно "расщепить" пароль суперпользователя, сообщив первую его часть одному сотруднику, а вторую - другому. Тогда критически важные действия по администрированию ИС они смогут выполнить только вдвоем, что снижает вероятность ошибок и злоупотреблений.

Принцип минимизации привилегий предписывает выделять пользователям только те права доступа, которые необходимы им для выполнения служебных обязанностей. Назначение этого принципа очевидно - уменьшить ущерб от случайных или умышленных некорректных действий пользователей.

Предварительное составление описания должности позволяет оценить ее критичность и спланировать процедуру проверки и отбора кандидатов. Чем критичнее должность, тем тщательнее нужно проверять кандидатов: навести о них справки, быть может, побеседовать с бывшими сослуживцами и т.д. Подобная процедура может быть длительной и дорогой, поэтому нет смысла усложнять ее сверх необходимого. В то же время, неразумно и совсем отказываться от предварительной проверки, рискуя принять на работу человека с уголовным прошлым или с душевными болезнями.

Когда кандидат отобран, он, вероятно, должен пройти обучение; по крайней мере, его следует подробно ознакомить со служебными обязанностями, а также с нормами и процедурами информационной безопасности.
Желательно, чтобы меры безопасности были им усвоены до вступления в должность и до заведения его системного счета с входным именем, паролем и привилегиями.

С момента заведения системного счета начинается его администрирование, а также протоколирование и анализ действий пользователя. Постепенно изменяется окружение, в котором работает пользователь, его служебные обязанности и т.п. Все это требует соответствующего изменения привилегий. Техническую сложность составляют временные перемещения сотрудника, выполнение им обязанностей взамен лица, ушедшего в отпуск, и иные обстоятельства, когда полномочия нужно сначала дать, а через некоторое время взять обратно. В такие периоды профиль активности пользователя резко меняется, что создает трудности при выявлении подозрительных ситуаций. Определенную аккуратность следует соблюдать и при выдаче новых постоянных полномочий, не забывая изымать старые права доступа.

Ликвидация системного счета пользователя, особенно в случае конфликта между сотрудником и организацией, должна производиться максимально оперативно (в идеале - одновременно с извещением о наказании или увольнении). Возможно и физическое ограничение доступа к рабочему месту. Разумеется, если сотрудник увольняется, у него нужно принять все его компьютерное хозяйство и, в частности, криптографические ключи, если использовались средства шифрования.

К управлению сотрудниками примыкает администрирование лиц, работающих по контракту (например, специалистов фирмы-поставщика, помогающих запустить новую систему). В соответствии с принципом минимизации привилегий, им нужно выделить ровно столько прав, сколько необходимо, и изъять эти права сразу по окончании контракта. Проблема, однако, состоит в том, что на начальном этапе внедрения "внешние" сотрудники будут администрировать "местных", а не наоборот. Здесь на первый план выходит квалификация персонала организации, его способность быстро обучаться, а также оперативное проведение учебных курсов. Важны и принципы выбора деловых партнеров.

Иногда внешние организации принимают на обслуживание и администрирование ответственные компоненты компьютерной системы, например, сетевое оборудование. Нередко администрирование выполняется в удаленном режиме. Вообще говоря, это создает в системе дополнительные уязвимости, которые необходимо компенсировать усиленным контролем средств удаленного доступа или, опять-таки, обучением собственных сотрудников.

Мы видим, что проблема обучения - одна из центральных с точки зрения информационной безопасности. Если сотрудник не знаком с политикой безопасности своей организации, он не может стремиться к достижению сформулированных в ней целей. Если он не знает мер безопасности, он не сможет их соблюдать. Напротив, если сотрудник знает, что его действия протоколируются, он, возможно, воздержится от нарушений.


Важность и сложность проблемы информационной безопасности


Для иллюстрации этого ограничимся несколькими примерами.

В Доктрине информационной безопасности Российской Федерации (здесь, подчеркнем, термин "информационная безопасность" используется в широком смысле) защита от несанкционированного доступа к информационным ресурсам, обеспечение безопасности информационных и телекоммуникационных систем выделены в качестве важных составляющих национальных интересов РФ в информационной сфере.

По распоряжению президента США Клинтона (от 15 июля 1996 года, номер 13010) была создана Комиссия по защите критически важной инфраструктуры как от физических нападений, так и от атак, предпринятых с помощью информационного оружия. В начале октября 1997 года при подготовке доклада президенту глава вышеупомянутой комиссии Роберт Марш заявил, что в настоящее время ни правительство, ни частный сектор не располагают средствами защиты от компьютерных атак, способных вывести из строя коммуникационные сети и сети энергоснабжения.

Американский ракетный крейсер "Йорктаун" был вынужден вернуться в порт из-за многочисленных проблем с программным обеспечением, функционировавшим на платформе Windows NT 4.0 (Government Computer News, июль 1998). Таким оказался побочный эффект программы ВМФ США по максимально широкому использованию коммерческого программного обеспечения с целью снижения стоимости военной техники.

Заместитель начальника управления по экономическим преступлениям Министерства внутренних дел России сообщил, что российские хакеры с 1994 по 1996 год предприняли почти 500 попыток проникновения в компьютерную сеть Центрального банка России. В 1995 году ими было похищено 250 миллиардов рублей (ИТАР-ТАСС, AP, 17 сентября 1996 года).

Как сообщил журнал Internet Week от 23 марта 1998 года, потери крупнейших компаний, вызванные компьютерными вторжениями, продолжают увеличиваться, несмотря на рост затрат на средства обеспечения безопасности. Согласно результатам совместного исследования Института информационной безопасности и ФБР, в 1997 году ущерб от компьютерных преступлений достиг 136 миллионов долларов, что на 36% больше, чем в 1996 году.
Каждое компьютерное преступление наносит ущерб примерно в 200 тысяч долларов.

В середине июля 1996 года корпорация General Motors отозвала 292860 автомобилей марки Pontiac, Oldsmobile и Buick моделей 1996 и 1997 годов, поскольку ошибка в программном обеспечении двигателя могла привести к пожару.

В феврале 2001 года двое бывших сотрудников компании Commerce One, воспользовавшись паролем администратора, удалили с сервера файлы, составлявшие крупный (на несколько миллионов долларов) проект для иностранного заказчика. К счастью, имелась резервная копия проекта, так что реальные потери ограничились расходами на следствие и средства защиты от подобных инцидентов в будущем. В августе 2002 года преступники предстали перед судом.

Одна студентка потеряла стипендию в 18 тысяч долларов в Мичиганском университете из-за того, что ее соседка по комнате воспользовалась их общим системным входом и отправила от имени своей жертвы электронное письмо с отказом от стипендии.

Понятно, что подобных примеров множество, можно вспомнить и другие случаи - недостатка в нарушениях ИБ нет и не предвидится. Чего стоит одна только "Проблема 2000" - стыд и позор программистского сообщества!

При анализе проблематики, связанной с информационной безопасностью, необходимо учитывать специфику данного аспекта безопасности, состоящую в том, что информационная безопасности есть составная часть информационных технологий - области, развивающейся беспрецедентно высокими темпами. Здесь важны не столько отдельные решения (законы, учебные курсы, программно-технические изделия), находящиеся на современном уровне, сколько механизмы генерации новых решений, позволяющие жить в темпе технического прогресса.

К сожалению, современная технология программирования не позволяет создавать безошибочные программы, что не способствует быстрому развитию средств обеспечения ИБ. Следует исходить из того, что необходимо конструировать надежные системы (информационной безопасности) с привлечением ненадежных компонентов (программ).


В принципе, это возможно, но требует соблюдения определенных архитектурных принципов и контроля состояния защищенности на всем протяжении жизненного цикла ИС.

Приведем еще несколько цифр. В марте 1999 года был опубликован очередной, четвертый по счету, годовой отчет "Компьютерная преступность и безопасность-1999: проблемы и тенденции" (Issues and Trends: 1999 CSI/FBI Computer Crime and Security Survey). В отчете отмечается резкий рост числа обращений в правоохранительные органы по поводу компьютерных преступлений (32% из числа опрошенных); 30% респондентов сообщили о том, что их информационные системы были взломаны внешними злоумышленниками; атакам через Internet подвергались 57% опрошенных; в 55% случаях отмечались нарушения со стороны собственных сотрудников. Примечательно, что 33% респондентов на вопрос "были ли взломаны ваши Web-серверы и системы электронной коммерции за последние 12 месяцев?" ответили "не знаю".

В аналогичном отчете, опубликованном в апреле 2002 года, цифры изменились, но тенденция осталась прежней: 90% респондентов (преимущественно из крупных компаний и правительственных структур) сообщили, что за последние 12 месяцев в их организациях имели место нарушения информационной безопасности; 80% констатировали финансовые потери от этих нарушений; 44% (223 респондента) смогли и/или захотели оценить потери количественно, общая сумма составила более 455 млн. долларов. Наибольший ущерб нанесли кражи и подлоги (более 170 и 115 млн. долларов соответственно).

Столь же тревожные результаты содержатся в обзоре InformationWeek, опубликованном 12 июля 1999 года. Лишь 22% респондентов заявили об отсутствии нарушений информационной безопасности. Наряду с распространением вирусов отмечается резкий рост числа внешних атак.

Увеличение числа атак - еще не самая большая неприятность. Хуже то, что постоянно обнаруживаются новые уязвимые места в программном обеспечении (выше мы указывали на ограниченность современной технологии программирования) и, как следствие, появляются новые виды атак.



Так, в информационном письме Национального центра защиты инфраструктуры США (National Infrastructure Protection Center, NIPC) от 21 июля 1999 года сообщается, что за период с 3 по 16 июля 1999 года выявлено девять проблем с ПО, риск использования которых оценивается как средний или высокий (общее число обнаруженных уязвимых мест равно 17). Среди "пострадавших" операционных платформ - почти все разновидности ОС Unix, Windows, MacOS, так что никто не может чувствовать себя спокойно, поскольку новые ошибки тут же начинают активно использоваться злоумышленниками.

В таких условиях системы информационной безопасности должны уметь противостоять разнообразным атакам, как внешним, так и внутренним, атакам автоматизированным и скоординированным. Иногда нападение длится доли секунды; порой прощупывание уязвимых мест ведется медленно и растягивается на часы, так что подозрительная активность практически незаметна. Целью злоумышленников может быть нарушение всех составляющих ИБ - доступности, целостности или конфиденциальности






Возможности типичных систем


Развитые системы управления имеют, если можно так выразиться, двухмерную настраиваемость - на нужды конкретных организаций и на изменения в информационных технологиях. Системы управления живут (по крайней мере, должны жить) долго. За это время в различных предметных областях администрирования (например, в области резервного копирования) наверняка появятся решения, превосходящие изначально заложенные в управляющий комплект. Последний должен уметь эволюционировать, причем разные его компоненты могут делать это с разной скоростью. Никакая жесткая, монолитная система такого не выдержит.

Единственный выход - наличие каркаса, с которого можно снимать старое и "навешивать" новое, не теряя эффективности управления.

Каркас как самостоятельный продукт необходим для достижения по крайней мере следующих целей:

сглаживание разнородности управляемых информационных систем, предоставление унифицированных программных интерфейсов для быстрой разработки управляющих приложений;

создание инфраструктуры управления, обеспечивающей наличие таких свойств, как поддержка распределенных конфигураций, масштабируемость, информационная безопасность и т.д.;

предоставление функционально полезных универсальных сервисов, таких как планирование заданий, генерация отчетов и т.п.

Вопрос о том, что, помимо каркаса, должно входить в систему управления, является достаточно сложным Во-первых, многие системы управления имеют мэйнфреймовое прошлое и попросту унаследовали некоторую функциональность, которая перестала быть необходимой. Во-вторых, для ряда функциональных задач появились отдельные, высококачественные решения, превосходящие аналогичные по назначению "штатные" компоненты. Видимо, с развитием объектного подхода, многоплатформенности важнейших сервисов и их взаимной совместимости, системы управления действительно превратятся в каркас. Пока же на их долю остается достаточно важных областей, а именно:

управление безопасностью;

управление загрузкой;

управление событиями;


управление хранением данных;

управление проблемными ситуациями;

генерация отчетов.

На уровне инфраструктуры присутствует решение еще одной важнейшей функциональной задачи - обеспечение автоматического обнаружения управляемых объектов, выявление их характеристик и связей между ними.

Отметим, что управление безопасностью в совокупности с соответствующим программным интерфейсом позволяет реализовать платформно-независимое разграничение доступа

к объектам произвольной природы и (что очень важно) вынести функции безопасности из прикладных систем. Чтобы выяснить, разрешен ли доступ текущей политикой, приложению достаточно обратиться к менеджеру безопасности

системы управления.

Менеджер безопасности осуществляет идентификацию/аутентификацию пользователей, контроль доступа к ресурсам и протоколирование неудачных попыток доступа. Можно считать, что менеджер безопасности встраивается в ядро операционных систем контролируемых элементов ИС, перехватывает соответствующие обращения и осуществляет свои проверки перед проверками, выполняемыми ОС, так что он создает еще один защитный рубеж, не отменяя, а дополняя защиту, реализуемую средствами ОС.

Развитые системы управления располагают централизованной базой, в которой хранится информация о контролируемой ИС и, в частности, некоторое представление о политике безопасности. Можно считать, что при каждой попытке доступа выполняется просмотр сохраненных в базе правил, в результате которого выясняется наличие у пользователя необходимых прав. Тем самым для проведения единой политики безопасности в рамках корпоративной информационной системы закладывается прочный технологический фундамент.

Хранение параметров безопасности в базе данных дает администраторам еще одно важное преимущество - возможность выполнения разнообразных запросов. Можно получить список ресурсов, доступных данному пользователю, список пользователей, имеющих доступ к данному ресурсу и т.п.

Одним из элементов обеспечения высокой доступности данных является подсистема автоматического управления хранением данных, выполняющая резервное копирование данных, а также автоматическое отслеживание их перемещения между основными и резервными носителями.



Для обеспечения высокой доступности информационных сервисов используется управление загрузкой, которое можно подразделить на управление прохождением заданий и контроль производительности.

Контроль производительности - понятие многогранное. Сюда входят и оценка быстродействия компьютеров, и анализ пропускной способности сетей, и отслеживание числа одновременно поддерживаемых пользователей, и время реакции, и накопление и анализ статистики использования ресурсов. Обычно в распределенной системе соответствующие данные доступны "в принципе", они поставляются точечными средствами управления, но проблема получения целостной картины, как текущей, так и перспективной, остается весьма сложной. Решить ее способна только система управления корпоративного уровня.

Средства контроля производительности целесообразно разбить на две категории:

выявление случаев неадекватного функционирования компонентов информационной системы и автоматическое реагирование на эти события;

анализ тенденций изменения производительности системы и долгосрочное планирование.

Для функционирования обеих категорий средств необходимо выбрать отслеживаемые параметры и допустимые границы для них, выход за которые означает "неадекватность функционирования". После этого задача сводится к выявлению нетипичного поведения компонентов ИС, для чего могут применяться статистические методы.

Управление событиями (точнее, сообщениями о событиях) - это базовый механизм, позволяющий контролировать состояние информационных систем в реальном времени. Системы управления позволяют классифицировать события и назначать для некоторых из них специальные процедуры обработки. Тем самым реализуется важный принцип автоматического реагирования.

Очевидно, что задачи контроля производительности и управления событиями, равно как и методы их решения в системах управления, близки к аналогичным аспектам систем активного аудита. Налицо еще одно свидетельство концептуального единства области знаний под названием "информационная безопасность" и необходимости реализации этого единства на практике.






Возможный подход к управлению доступом в распределенной объектной среде


Представляется, что в настоящее время проблема управления доступом существует в трех почти не связанных между собой проявлениях:

традиционные модели (дискреционная и мандатная);

модель "песочница" (предложенная для Java-среды и близкой ей системы Safe-Tcl);

модель фильтрации (используемая в межсетевых экранах).

На наш взгляд, необходимо объединить существующие подходы на основе их развития и обобщения.

Формальная постановка задачи разграничения доступа может выглядеть следующим образом.

Рассматривается множество объектов (в смысле объектно-ориентированного программирования). Часть объектов может являться контейнерами, группирующими объекты-компоненты, задающими для них общий контекст, выполняющими общие функции и реализующими перебор компонентов. Контейнеры либо вложены друг в друга, либо не имеют общих компонентов.

С каждым объектом ассоциирован набор интерфейсов, снабженных дескрипторами (ДИ). К объекту можно обратиться только посредством ДИ. Разные интерфейсы могут предоставлять разные методы и быть доступными для разных объектов.

Каждый контейнер позволяет опросить набор ДИ объектов-компонентов, удовлетворяющих некоторому условию. Возвращаемый результат в общем случае зависит от вызывающего объекта.

Объекты изолированы друг от друга. Единственным видом межобъектного взаимодействия является вызов метода.

Предполагается, что используются надежные средства аутентификации и защиты коммуникаций. В плане разграничения доступа локальные и удаленные вызовы не различаются.

Предполагается также, что разрешение или запрет на доступ не зависят от возможного параллельного выполнения методов (синхронизация представляет отдельную проблему, которая здесь не рассматривается).

Разграничивается доступ к интерфейсам объектов, а также к методам объектов (с учетом значений фактических параметров вызова). Правила разграничения доступа (ПРД)

задаются в виде предикатов над объектами.

Рассматривается задача разграничения доступа для выделенного контейнера CC, компонентами которого должны являться вызывающий и/или вызываемый объекты.
ДИ этого контейнера полагается общеизвестным. Считается также, что между внешними по отношению к выделенному контейнеру объектами возможны любые вызовы.

Выполнение ПРД контролируется монитором обращений.

При вызове метода мы будем разделять действия, производимые вызывающим объектом (инициация вызова) и вызываемым методом (прием и завершение вызова).

При инициации вызова может производиться преобразование ДИ фактических параметров к виду, доступному вызываемому методу ("трансляция интерфейса"). Трансляция может иметь место, если вызываемый объект не входит в тот же контейнер, что и вызывающий.

Параметры методов могут быть входными и/или выходными. При приеме вызова возникает информационный поток из входных параметров в вызываемый объект. В момент завершения вызова возникает информационный поток из вызываемого объекта в выходные параметры. Эти потоки могут фигурировать в правилах разграничения доступа.

Структурируем множество всех ПРД, выделив четыре группы правил:

политика безопасности контейнера;

ограничения на вызываемый метод;

ограничения на вызывающий метод;

добровольно налагаемые ограничения.

Правила, общие для всех объектов, входящих в контейнер C, назовем политикой безопасности данного контейнера.

Пусть метод M1 объекта O1 в точке P1 своего выполнения должен вызвать метод M объекта O. Правила, которым должен удовлетворять M, можно разделить на три следующие подгруппы:

правила, описывающие требования к формальным параметрам

вызова;

правила, описывающие требования к семантике M;

реализационные правила, накладывающие ограничения на возможные реализации M;

правила, накладывающие ограничения на вызываемый объект O.

Метод M объекта O, потенциально доступный для вызова, может предъявлять к вызывающему объекту следующие группы требований:

правила, описывающие требования к фактическим параметрам вызова;

правила, накладывающие ограничения на вызывающий объект.

Можно выделить три разновидности предикатов, соответствующих семантике и/или особенностям реализации методов:

утверждения о фактических параметрах вызова метода M в точке P1;

предикат, описывающий семантику метода M;

предикат, описывающий особенности реализации метода M.

Перечисленные ограничения можно назвать добровольными, поскольку они соответствуют реальному поведению объектов и не связаны с какими-либо внешними требованиями.

Предложенная постановка задачи разграничения доступа соответствует современному этапу развития программирования, она позволяет выразить сколь угодно сложную политику безопасности, найти баланс между богатством выразительных возможностей и эффективностью работы монитора обращений.






Вредоносное программное обеспечение


Одним из опаснейших способов проведения атак является внедрение в атакуемые системы вредоносного программного обеспечения.

Мы выделим следующие грани вредоносного ПО:

вредоносная функция;

способ распространения;

внешнее представление.

Часть, осуществляющую разрушительную функцию, будем называть "бомбой"

(хотя, возможно, более удачными терминами были бы "заряд" или "боеголовка"). Вообще говоря, спектр вредоносных функций неограничен, поскольку "бомба", как и любая другая программа, может обладать сколь угодно сложной логикой, но обычно "бомбы" предназначаются для:

внедрения другого вредоносного ПО;

получения контроля над атакуемой системой;

агрессивного потребления ресурсов;

изменения или разрушения программ и/или данных.

По механизму распространения различают:

вирусы - код, обладающий способностью к распространению (возможно, с изменениями) путем внедрения в другие программы;

"черви" - код, способный самостоятельно, то есть без внедрения в другие программы, вызывать распространение своих копий по ИС и их выполнение (для активизации вируса требуется запуск зараженной программы).

Вирусы обычно распространяются локально, в пределах узла сети; для передачи по сети им требуется внешняя помощь, такая как пересылка зараженного файла. "Черви",

напротив, ориентированы в первую очередь на путешествия по сети.

Иногда само распространение вредоносного ПО вызывает агрессивное потребление ресурсов и, следовательно, является вредоносной функцией. Например, "черви" "съедают" полосу пропускания сети и ресурсы почтовых систем. По этой причине для атак на доступность они не нуждаются во встраивании специальных "бомб".

Вредоносный код, который выглядит как функционально полезная программа, называется троянским. Например, обычная программа, будучи пораженной вирусом, становится троянской; порой троянские программы изготавливают вручную и подсовывают доверчивым пользователям в какой-либо привлекательной упаковке.


Отметим, что данные нами определения и приведенная классификация вредоносного ПО

отличаются от общепринятых. Например, в ГОСТ Р 51275-99 " Защита информации. Объект информатизации. Факторы, воздействующие на информацию. Общие положения" содержится следующее определение:

"Программный вирус - это исполняемый или интерпретируемый программный код, обладающий свойством несанкционированного распространения и самовоспроизведения в автоматизированных системах или телекоммуникационных сетях с целью изменить или уничтожить программное обеспечение и/или данные, хранящиеся в автоматизированных системах".

На наш взгляд, подобное определение неудачно, поскольку в нем смешаны функциональные и транспортные аспекты.

Окно опасности для вредоносного ПО появляется с выпуском новой разновидности "бомб", вирусов и/или "червей" и перестает существовать с обновлением базы данных антивирусных программ и наложением других необходимых заплат.

По традиции из всего вредоносного ПО наибольшее внимание общественности приходится на долю вирусов. Однако до марта 1999 года с полным правом можно было утверждать, что "несмотря на экспоненциальный рост числа известных вирусов, аналогичного роста количества инцидентов, вызванных ими, не зарегистрировано. Соблюдение несложных правил "компьютерной гигиены" практически сводит риск заражения к нулю. Там, где работают, а не играют, число зараженных компьютеров составляет лишь доли процента".

В марте 1999 года, с появлением вируса "Melissa", ситуация кардинальным образом изменилась. "Melissa" - это макровирус для файлов MS-Word, распространяющийся посредством электронной почты в присоединенных файлах. Когда такой (зараженный) присоединенный файл открывают, он рассылает свои копии по первым 50 адресам из адресной книги Microsoft Outlook. В результате почтовые серверы подвергаются атаке на доступность.

В данном случае нам хотелось бы отметить два момента.

Как уже говорилось, пассивные объекты отходят в прошлое; так называемое активное содержимое становится нормой.


Файлы, которые по всем признакам должны были бы относиться к данным (например, документы в форматах MS-Word или Postscript, тексты почтовых сообщений), способны содержать интерпретируемые компоненты, которые могут запускаться неявным образом при открытии файла. Как и всякое в целом прогрессивное явление, такое "повышение активности данных" имеет свою оборотную сторону (в рассматриваемом случае - отставание в разработке механизмов безопасности и ошибки в их реализации). Обычные пользователи еще не скоро научатся применять интерпретируемые компоненты "в мирных целях" (или хотя бы узнают об их существовании), а перед злоумышленниками открылось по существу неограниченное поле деятельности. Как ни банально это звучит, но если для стрельбы по воробьям выкатывается пушка, то пострадает в основном стреляющий.

Интеграция разных сервисов, наличие среди них сетевых, всеобщая связность многократно увеличивают потенциал для атак на доступность, облегчают распространение вредоносного ПО (вирус "Melissa" - классический тому пример). Образно говоря, многие информационные системы, если не принять защитных мер, оказываются "в одной лодке" (точнее - в корабле без переборок), так что достаточно одной пробоины, чтобы "лодка" тут же пошла ко дну.

Как это часто бывает, вслед за "Melissa" появилась на свет целая серия вирусов, "червей" и их комбинаций: "Explorer.zip" (июнь 1999), "Bubble Boy" (ноябрь 1999), "ILOVEYOU" (май 2000) и т.д. Не то что бы от них был особенно большой ущерб, но общественный резонанс они вызвали немалый.

Активное содержимое, помимо интерпретируемых компонентов документов и других файлов данных, имеет еще одно популярное обличье - так называемые мобильные агенты.

Это программы, которые загружаются на другие компьютеры и там выполняются. Наиболее известные примеры мобильных агентов - Java-апплеты, загружаемые на пользовательский компьютер и интерпретируемые Internet-навигаторами.


Оказалось, что разработать для них модель безопасности, оставляющую достаточно возможностей для полезных действий, не так-то просто; еще сложнее реализовать такую модель без ошибок. В августе 1999 года стали известны недочеты в реализации технологий ActiveX и Java в рамках Microsoft Internet Explorer, которые давали возможность размещать на Web-серверах вредоносные апплеты, позволяющие получать полный контроль над системой-визитером.

Для внедрения "бомб" часто используются ошибки типа "переполнение буфера", когда программа, работая с областью памяти, выходит за границы допустимого и записывает в нужные злоумышленнику места определенные данные. Так действовал еще в 1988 году знаменитый "червь Морриса"; в июне 1999 года хакеры нашли способ использовать аналогичный метод по отношению к Microsoft Internet Information Server (IIS), чтобы получить контроль над Web-сервером. Окно опасности охватило сразу около полутора миллионов серверных систем...

Не забыты современными злоумышленниками и испытанные троянские программы. Например, "троянцы" Back Orifice и Netbus позволяют получить контроль над пользовательскими системами с различными вариантами MS-Windows.

Таким образом, действие вредоносного ПО может быть направлено не только против доступности, но и против других основных аспектов информационной безопасности.


Закон "Об информации, информатизации и защите информации"


Основополагающим среди российских законов, посвященных вопросам информационной безопасности, следует считать закон "Об информации, информатизации и защите информации" от 20 февраля 1995 года номер 24-ФЗ (принят Государственной Думой 25 января 1995 года). В нем даются основные определения и намечаются направления развития законодательства в данной области.

Процитируем некоторые из этих определений:

информация - сведения о лицах, предметах, фактах, событиях, явлениях и процессах независимо от формы их представления;

документированная информация (документ) - зафиксированная на материальном носителе информация с реквизитами, позволяющими ее идентифицировать;

информационные процессы - процессы сбора, обработки, накопления, хранения, поиска и распространения информации;

информационная система - организационно упорядоченная совокупность документов (массивов документов) и информационных технологий, в том числе с использованием средств вычислительной техники и связи, реализующих информационные процессы;

информационные ресурсы - отдельные документы и отдельные массивы документов, документы и массивы документов в информационных системах (библиотеках, архивах, фондах, банках данных, других информационных системах);

информация о гражданах (персональные данные) - сведения о фактах, событиях и обстоятельствах жизни гражданина, позволяющие идентифицировать его личность;

конфиденциальная информация - документированная информация, доступ к которой ограничивается в соответствии с законодательством Российской Федерации;

пользователь (потребитель) информации - субъект, обращающийся к информационной системе или посреднику за получением необходимой ему информации и пользующийся ею.

Мы, разумеется, не будем обсуждать качество данных в Законе определений. Обратим лишь внимание на гибкость определения конфиденциальной информации, которая не сводится к сведениям, составляющим государственную тайну, а также на понятие персональных данных, закладывающее основу защиты последних.


Закон выделяет следующие цели защиты информации:

предотвращение утечки, хищения, утраты, искажения, подделки информации;

предотвращение угроз безопасности личности, общества, государства;

предотвращение несанкционированных действий по уничтожению, модификации, искажению, копированию, блокированию информации;

предотвращение других форм незаконного вмешательства в информационные ресурсы и информационные системы, обеспечение правового режима документированной информации как объекта собственности;

защита конституционных прав граждан на сохранение личной тайны и конфиденциальности персональных данных, имеющихся в информационных системах;

сохранение государственной тайны, конфиденциальности документированной информации в соответствии с законодательством;

обеспечение прав субъектов в информационных процессах и при разработке, производстве и применении информационных систем, технологий и средств их обеспечения.

Отметим, что Закон на первое место ставит сохранение конфиденциальности информации. Целостность представлена также достаточно полно, хотя и на втором месте. О доступности ("предотвращение несанкционированных действий по ... блокированию информации") сказано довольно мало.

Продолжим цитирование:

"Защите подлежит любая документированная информация, неправомерное обращение с которой может нанести ущерб ее собственнику, владельцу, пользователю и иному лицу".

По сути, это положение констатирует, что защита информации направлена на обеспечение интересов субъектов информационных отношений.

Далее. "Режим защиты информации устанавливается:

в отношении сведений, отнесенных к государственной тайне, - уполномоченными органами на основании Закона Российской Федерации "О государственной тайне";

в отношении конфиденциальной документированной информации - собственником информационных ресурсов или уполномоченным лицом на основании настоящего Федерального закона;

в отношении персональных данных - федеральным законом."

Здесь явно выделены три вида защищаемой информации, ко второму из которых принадлежит, в частности, коммерческая информация.


Поскольку защите подлежит только документированная информация, необходимым условием является фиксация коммерческой информации на материальном носителе и снабжение ее реквизитами. Отметим, что в данном месте Закона речь идет только о конфиденциальности; остальные аспекты ИБ забыты.

Обратим внимание, что защиту государственной тайны и персональных данных берет на себя государство; за другую конфиденциальную информацию отвечают ее собственники.

Как же защищать информацию? В качестве основного закон предлагает для этой цели мощные универсальные средства: лицензирование и сертификацию. Процитируем статью 19.

Информационные системы, базы и банки данных, предназначенные для информационного обслуживания граждан и организаций, подлежат сертификации в порядке, установленном Законом Российской Федерации "О сертификации продукции и услуг".

Информационные системы органов государственной власти Российской Федерации и органов государственной власти субъектов Российской Федерации, других государственных органов, организаций, которые обрабатывают документированную информацию с ограниченным доступом, а также средства защиты этих систем подлежат обязательной сертификации. Порядок сертификации определяется законодательством Российской Федерации.

Организации, выполняющие работы в области проектирования, производства средств защиты информации и обработки персональных данных, получают лицензии на этот вид деятельности. Порядок лицензирования определяется законодательством Российской Федерации.

Интересы потребителя информации при использовании импортной продукции в информационных системах защищаются таможенными органами Российской Федерации на основе международной системы сертификации.

Здесь трудно удержаться от риторического вопроса: а есть ли в России информационные системы без импортной продукции? Получается, что на защите интересов потребителей стоит в данном случае только таможня...

И еще несколько пунктов, теперь из статьи 22:

Владелец документов, массива документов, информационных систем обеспечивает уровень защиты информации в соответствии с законодательством Российской Федерации.



Риск, связанный с использованием несертифицированных информационных систем и средств их обеспечения, лежит на собственнике (владельце) этих систем и средств. Риск, связанный с использованием информации, полученной из несертифицированной системы, лежит на потребителе информации.

Собственник документов, массива документов, информационных систем может обращаться в организации, осуществляющие сертификацию средств защиты информационных систем и информационных ресурсов, для проведения анализа достаточности мер защиты его ресурсов и систем и получения консультаций.

Владелец документов, массива документов, информационных систем обязан оповещать собственника информационных ресурсов и (или) информационных систем о всех фактах нарушения режима защиты информации.

Из пункта 5 следует, что должны обнаруживаться все (успешные) атаки на ИС. Вспомним в этой связи один из результатов опроса (см. лекцию 1): около трети респондентов-американцев не знали, были ли взломаны их ИС за последние 12 месяцев. По нашему законодательству их можно было бы привлечь к ответственности...

Далее, статья 23 "Защита прав субъектов в сфере информационных процессов и информатизации" содержит следующий пункт:

Защита прав субъектов в указанной сфере осуществляется судом, арбитражным судом, третейским судом с учетом специфики правонарушений и нанесенного ущерба. Очень важными являются пункты статьи 5, касающиеся юридической силы электронного документа и электронной цифровой подписи:

Юридическая сила документа, хранимого, обрабатываемого и передаваемого с помощью автоматизированных информационных и телекоммуникационных систем, может подтверждаться электронной цифровой подписью.

Юридическая сила электронной цифровой подписи признается при наличии в автоматизированной информационной системе программно-технических средств, обеспечивающих идентификацию подписи, и соблюдении установленного режима их использования.

Право удостоверять идентичность электронной цифровой подписи осуществляется на основании лицензии.Порядок выдачи лицензий определяется законодательством Российской Федерации.

Таким образом, Закон предлагает действенное средство контроля целостности и решения проблемы "неотказуемости" (невозможности отказаться от собственной подписи).

Таковы важнейшие, на наш взгляд, положения Закона "Об информации, информатизации и защите информации". На следующей странице будут рассмотрены другие законы РФ в области информационной безопасности.


Законодательный, административный и процедурный уровни


Законодательный уровень является важнейшим для обеспечения информационной безопасности. Необходимо всячески подчеркивать важность проблемы ИБ; сконцентрировать ресурсы на важнейших направлениях исследований; скоординировать образовательную деятельность; создать и поддерживать негативное отношение к нарушителям ИБ - все это функции законодательного уровня.

На законодательном уровне особого внимания заслуживают правовые акты и стандарты.

Российские правовые акты в большинстве своем имеют ограничительную направленность. Но то, что для Уголовного или Гражданского кодекса естественно, по отношению к Закону об информации, информатизации и защите информации является принципиальным недостатком. Сами по себе лицензирование и сертификация не обеспечивают безопасности. К тому же в законах не предусмотрена ответственность государственных органов за нарушения ИБ. Реальность такова, что в России в деле обеспечения ИБ на помощь государства рассчитывать не приходится.

На этом фоне поучительным является знакомство с законодательством США в области ИБ, которое гораздо обширнее и многограннее российского.

Среди стандартов выделяются "Оранжевая книга", рекомендации X.800 и "Критерии оценки безопасности информационных технологий".

"Оранжевая книга" заложила понятийный базис; в ней определяются важнейшие сервисы безопасности

и предлагается метод классификации информационных систем по требованиям безопасности.

Рекомендации X.800 весьма глубоко трактуют вопросы защиты сетевых конфигураций и предлагают развитый набор сервисов и механизмов безопасности.

Международный стандарт ISO 15408, известный как "Общие критерии", реализует более современный подход, в нем зафиксирован чрезвычайно широкий спектр сервисов безопасности (представленных как функциональные требования). Его принятие в качестве национального стандарта важно не только из абстрактных соображений интеграции в мировое сообщество; оно, как можно надеяться, облегчит жизнь владельцам информационных систем, существенно расширив спектр доступных сертифицированных решений.


Главная задача мер административного уровня - сформировать программу работ в области информационной безопасности и обеспечить ее выполнение, выделяя необходимые ресурсы и контролируя состояние дел.

Основой программы является политика безопасности, отражающая подход организации к защите своих информационных активов.

Разработка политики и программы

безопасности начинается с анализа рисков, первым этапом которого, в свою очередь, является ознакомление с наиболее распространенными угрозами.

Главные угрозы - внутренняя сложность ИС, непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы.

На втором месте по размеру ущерба стоят кражи и подлоги.

Реальную опасность представляют пожары и другие аварии поддерживающей инфраструктуры.

В общем числе нарушений растет доля внешних атак, но основной ущерб по-прежнему наносят "свои".

Для подавляющего большинства организаций достаточно общего знакомства с рисками; ориентация на типовые, апробированные решения позволит обеспечить базовый уровень безопасности

при минимальных интеллектуальных и разумных материальных затратах.

Существенную помощь в разработке политики безопасности может оказать британский стандарт BS 7799:1995, предлагающий типовой каркас.

Разработка программы и политики безопасности может служить примером использования понятия уровня детализации. Они должны подразделяться на несколько уровней, трактующих вопросы разной степени специфичности. Важным элементом программы является разработка и поддержание в актуальном состоянии карты ИС.

Необходимым условием для построения надежной, экономичной защиты является рассмотрение жизненного цикла ИС и синхронизация с ним мер безопасности. Выделяют следующие этапы жизненного цикла:

инициация;

закупка;

установка;

эксплуатация;

выведение из эксплуатации.

Безопасность невозможно добавить к системе; ее нужно закладывать с самого начала и поддерживать до конца.

Меры процедурного уровня ориентированы на людей (а не на технические средства) и подразделяются на следующие виды:



управление персоналом;

физическая защита;

поддержание работоспособности;

реагирование на нарушения режима безопасности;

планирование восстановительных работ.

На этом уровне применимы важные принципы безопасности:

непрерывность защиты в пространстве и времени;

разделение обязанностей;

минимизация привилегий.

Здесь также применимы объектный подход и понятие жизненного цикла. Первый позволяет разделить контролируемые сущности (территорию, аппаратуру и т.д.) на относительно независимые подобъекты, рассматривая их с разной степенью детализации и контролируя связи между ними.

Понятие жизненного цикла полезно применять не только к информационным системам, но и к сотрудникам. На этапе инициации должно быть разработано описание должности с требованиями к квалификации и выделяемыми компьютерными привилегиями; на этапе установки необходимо провести обучение, в том числе по вопросам безопасности; на этапе выведения из эксплуатации следует действовать аккуратно, не допуская нанесения ущерба обиженными сотрудниками.

Информационная безопасность во многом зависит от аккуратного ведения текущей работы, которая включает:

поддержку пользователей;

поддержку программного обеспечения;

конфигурационное управление;

резервное копирование;

управление носителями;

документирование;

регламентные работы.

Элементом повседневной деятельности является отслеживание информации в области ИБ; как минимум, администратор безопасности должен подписаться на список рассылки по новым пробелам в защите (и своевременно знакомиться с поступающими сообщениями).

Нужно, однако, заранее готовиться к событиям неординарным, то есть к нарушениям ИБ. Заранее продуманная реакция на нарушения режима безопасности преследует три главные цели:

локализация инцидента и уменьшение наносимого вреда;

выявление нарушителя;

предупреждение повторных нарушений.

Выявление нарушителя - процесс сложный, но первый и третий пункты можно и нужно тщательно продумать и отработать.

В случае серьезных аварий необходимо проведение восстановительных работ.Процесс планирования таких работ можно разделить на следующие этапы:

выявление критически важных функций организации, установление приоритетов;

идентификация ресурсов, необходимых для выполнения критически важных функций;

определение перечня возможных аварий;

разработка стратегии восстановительных работ;

подготовка к реализации выбранной стратегии;

проверка стратегии.