Нотация и семантика языка UML

         

Методология объектно-ориентированного программирования


Методология объектно-ориентированного программирования пришла на смену процедурной или алгоритмической организации структуры программного кода, когда стало очевидно, что традиционные методы процедурного программирования не способны справиться ни с растущей сложностью программ и их разработки, ни с повышением их надежности. Во второй половине 80-х годов возникла настоятельная потребность в новой методологии программирования, которая бы позволила решить весь этот комплекс проблем. Такой методологией стало объектно-ориентированное программирование (ООП).

Объектно-ориентированное программирование (ООП, Object-Oriented Programming) - совокупность принципов, технологий , а также инструментальных средств для создания программных систем на основе архитектуры взаимодействия объектов.

Распространение методологии ООП связано с процессом разработки программ. В частности, процедурно-ориентированная декомпозиция программ уступила место объектно-ориентированной, при которой в качестве отдельных структурных единиц программы рассматриваются не процедуры и функции, а классы и объекты с соответствующими свойствами и методами. Как следствие, программа перестала быть последовательностью предопределенных на этапе кодирования действий, а преобразовалась в событийно управляемую. Последнее обстоятельство доминирует и при разработке широкого круга современных приложений. В этом случае каждая программа представляет собой бесконечный цикл ожидания заранее определенных событий. Инициаторами событий могут быть другие программы или пользователи, а при наступлении отдельного события программа выходит из состояния ожидания и реагирует на него вполне адекватным образом.

Основные принципы ООП: абстракция, наследование, инкапсуляция и полиморфизм.

Абстракция (abstraction) - характеристика сущности, которая отличает ее от других сущностей. Абстракция определяет границу представления соответствующего элемента модели и применяется для определения фундаментальных понятий ООП, таких как класс и объект.

Класс представляет собой абстракцию совокупности реальных объектов, которые имеют общий набор свойств и обладают одинаковым поведением.
Объект в контексте ООП рассматривается как экземпляр соответствующего класса.

Объекты, которые не имеют идентичных свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу.

Классы можно организовать в виде иерархической структуры, которая по внешнему виду напоминает схему классификации в понятийной логике. Иерархия понятий строится следующим образом. В качестве наиболее общего понятия или категории берется понятие, имеющее наибольший объем и, соответственно, наименьшее содержание. Это самый высокий уровень абстракции для данной иерархии. Затем данное общее понятие конкретизируется, то есть уменьшается его объем и увеличивается содержание. Появляется менее общее понятие, которое на схеме иерархии будет расположено на уровень ниже исходного. Этот процесс конкретизации понятий может быть продолжен до тех пор, пока на самом нижнем уровне не будет получено понятие, дальнейшая конкретизация которого в данном контексте либо невозможна, либо нецелесообразна.

Принцип, в соответствии с которым знание о наиболее общей категории разрешается применять для более частной категории, называется наследованием.

Наследование тесно связано с иерархией классов, определяющей, какие классы следует считать наиболее абстрактными и общими по отношению к другим классам. При этом если общий или родительский класс (предок) обладает фиксированным набором свойств и поведением, то производный от него класс (потомок) должен содержать этот же набор свойств и подобное поведение, а также дополнительные, которые будут характеризовать уникальность полученного класса. В этом случае говорят, что производный класс наследует свойства и поведение родительского класса.

Для иллюстрации принципа наследования можно привести следующий пример. Общий класс "Компьютер". Он определяется как абстракция свойств и поведения всех, реально существующих электронных вычислительных машин. При этом общими свойствами класса "Компьютер" могут быть такие , как наличие процессора, оперативной памяти, устройств ввода и вывода информации.


Если в качестве производного рассмотреть класс "Персональный компьютер", то все выделенные выше свойства будет содержать и этот класс. Можно сказать, что класс "Персональный компьютер" наследует свойства родительского класса "Компьютер". Однако кроме перечисленных свойств классу-потомоку будут присущи дополнительные, например, наличие системного блока и материнской платы с разъемом для установки микропроцессора.

В свою очередь класс "Персональный компьютер" может быть классом-предком для других классов, в частности "Рабочая станция", "Сервер" и "Ноутбук". С этой точки зрения все указанные классы наследуют свойства родительского класса "Персональный компьютер", а возможно и переопределяют некоторые из них. Описанная выше текстовая информация о соотношении классов в данном примере обладает одним серьезным недостатком, а именно, отсутствием наглядности. В этой связи возникает вопрос: а возможно ли представить иерархию наследования классов в визуальной форме? В понятийной логике для изображения понятий используются окружности или прямоугольники. С помощью этой графической нотации, иерархию классов для рассмотренного примера можно представить в виде вложенных прямоугольников или окружностей, каждый из которых соответствует отдельному классу (рис. 1.1).


Рис. 1.1.  Иерархия вложенности классов для примера общего класса "Компьютер"

Подобное изображение обладает серьезным недостатком. Из представленного рисунка не ясно, изображена ли на нем иерархия понятий или декомпозиция класса "Компьютер" на его составные части. Как будет показано далее, использование нотации UML позволяет устранить данную неопределенность посредством введения в рассмотрение двух различных отношений: обобщения и агрегации (Лекция 6).

Следующий принцип ООП - инкапсуляция. Инкапсуляция характеризует сокрытие отдельных деталей внутреннего устройства классов от внешних по отношению к нему объектов или пользователей.



Клиенту, взаимодействующему с объектом класса, необязательно знать, каким образом осуществлен тот или иной элемент класса. Конкретная реализация присущих классу свойств и методов, которые определяют его поведение, является собственным делом данного класса. Более того, отдельные свойства и методы класса могут быть невидимы за его пределами, это относится к базовой идее введения различных категорий видимости для элементов класса.

На примере с классом "Компьютер" нетрудно проиллюстрировать инкапсуляцию следующим образом. Основным субъектом, который взаимодействует с объектами этого класса, является пользователь. Вполне очевидно, что не каждый пользователь в совершенстве знает внутреннее устройство того или иного компьютера. К тому же, отдельные детали этого устройства сознательно скрыты в корпусе системного блока или монитора. А в случае нарушения работы компьютера, которое является причиной неадекватности его поведения, необходимый ремонт выполняет профессиональный специалист.

Инкапсуляция ведет свое происхождение от деления модулей в некоторых языках программирования на две части или секции: интерфейс и реализацию. При этом в интерфейсной секции модуля описываются все объявления функций и процедур, а возможно и типов данных, доступных за пределами модуля. Указанные процедуры и функции являются способами оказания услуг внешним клиентам. В другой секции модуля, называемой реализацией, содержится программный код, который определяет конкретные способы реализации объявленных в интерфейсной части процедур и функций.

Полиморфизм также один из основных принципов ООП. Под полиморфизмом (греч. Poly - много, morfos - форма) понимается свойство объектов принимать различные внешние формы в зависимости от обстоятельств. Применительно к ООП полиморфизм означает, что действия, выполняемые одноименными методами, могут различаться в зависимости от того, к какому из классов относится тот или иной метод.

К примеру, три объекта соответствующих классов: двигатель автомобиля, электрический свет в комнате и персональный компьютер.


Для каждого из них можно определить операцию выключить(). Однако результат выполнения этой операции будет отличаться для каждого из рассмотренных объектов. Так для двигателя автомобиля выполнение операции выключить() означает прекращение подачи топлива и его остановку. Выполнение операции выключить() для электрического света в комнате означает простой щелчок выключателя, после чего комната погружается в темноту. В последнем случае для персонального компьютера выполнение операции выключить() может быть причиной потери данных, если производится нерегламентированным образом.

Полиморфизм объектно-ориентированных языков связан с перегрузкой функций, но не тождествен ей. Важно иметь в виду, что имена методов и свойств тесно связаны с классами, в которых они описаны. Это обстоятельство обеспечивает определенную надежность работы программы, поскольку исключает случайное применение метода для решения несвойственной ему задачи.

Наиболее существенным обстоятельством в развитии методологии ООП явилось осознание того, что процесс написания программного кода может быть отделен от процесса проектирования структуры программы. Прежде, чем начать программирование классов, их свойств и методов, необходимо определить сами эти классы. Более того, нужно дать ответы на следующие вопросы: сколько и какие классы нужно определить для решения поставленной задачи, какие свойства и методы необходимы для придания классам требуемого поведения, а также установить взаимосвязи между классами. Эта совокупность задач не столько связана с написанием кода, сколько с общим анализом требований к будущей программе, а также с анализом конкретной предметной области, для которой разрабатывается программа. Все эти обстоятельства привели к появлению специальной методологии, получившей название методологии объектно-ориентированного анализа и проектирования (ООАП).



Объект в контексте ООП рассматривается как экземпляр соответствующего класса.

Объекты, которые не имеют идентичных свойств или не обладают одинаковым поведением, по определению, не могут быть отнесены к одному классу.

Классы можно организовать в виде иерархической структуры, которая по внешнему виду напоминает схему классификации в понятийной логике. Иерархия понятий строится следующим образом. В качестве наиболее общего понятия или категории берется понятие, имеющее наибольший объем и, соответственно, наименьшее содержание. Это самый высокий уровень абстракции для данной иерархии. Затем данное общее понятие конкретизируется, то есть уменьшается его объем и увеличивается содержание. Появляется менее общее понятие, которое на схеме иерархии будет расположено на уровень ниже исходного. Этот процесс конкретизации понятий может быть продолжен до тех пор, пока на самом нижнем уровне не будет получено понятие, дальнейшая конкретизация которого в данном контексте либо невозможна, либо нецелесообразна.

Принцип, в соответствии с которым знание о наиболее общей категории разрешается применять для более частной категории, называется наследованием.

Наследование тесно связано с иерархией классов, определяющей, какие классы следует считать наиболее абстрактными и общими по отношению к другим классам. При этом если общий или родительский класс (предок) обладает фиксированным набором свойств и поведением, то производный от него класс (потомок) должен содержать этот же набор свойств и подобное поведение, а также дополнительные, которые будут характеризовать уникальность полученного класса. В этом случае говорят, что производный класс наследует свойства и поведение родительского класса.

Для иллюстрации принципа наследования можно привести следующий пример. Общий класс "Компьютер". Он определяется как абстракция свойств и поведения всех, реально существующих электронных вычислительных машин. При этом общими свойствами класса "Компьютер" могут быть такие , как наличие процессора, оперативной памяти, устройств ввода и вывода информации.


Если в качестве производного рассмотреть класс "Персональный компьютер", то все выделенные выше свойства будет содержать и этот класс. Можно сказать, что класс "Персональный компьютер" наследует свойства родительского класса "Компьютер". Однако кроме перечисленных свойств классу-потомоку будут присущи дополнительные, например, наличие системного блока и материнской платы с разъемом для установки микропроцессора.

В свою очередь класс "Персональный компьютер" может быть классом-предком для других классов, в частности "Рабочая станция", "Сервер" и "Ноутбук". С этой точки зрения все указанные классы наследуют свойства родительского класса "Персональный компьютер", а возможно и переопределяют некоторые из них. Описанная выше текстовая информация о соотношении классов в данном примере обладает одним серьезным недостатком, а именно, отсутствием наглядности. В этой связи возникает вопрос: а возможно ли представить иерархию наследования классов в визуальной форме? В понятийной логике для изображения понятий используются окружности или прямоугольники. С помощью этой графической нотации, иерархию классов для рассмотренного примера можно представить в виде вложенных прямоугольников или окружностей, каждый из которых соответствует отдельному классу (рис. 1.1).


Рис. 1.1.  Иерархия вложенности классов для примера общего класса "Компьютер"

Подобное изображение обладает серьезным недостатком. Из представленного рисунка не ясно, изображена ли на нем иерархия понятий или декомпозиция класса "Компьютер" на его составные части. Как будет показано далее, использование нотации UML позволяет устранить данную неопределенность посредством введения в рассмотрение двух различных отношений: обобщения и агрегации (Лекция 6).

Следующий принцип ООП - инкапсуляция. Инкапсуляция характеризует сокрытие отдельных деталей внутреннего устройства классов от внешних по отношению к нему объектов или пользователей.



Клиенту, взаимодействующему с объектом класса, необязательно знать, каким образом осуществлен тот или иной элемент класса. Конкретная реализация присущих классу свойств и методов, которые определяют его поведение, является собственным делом данного класса. Более того, отдельные свойства и методы класса могут быть невидимы за его пределами, это относится к базовой идее введения различных категорий видимости для элементов класса.

На примере с классом "Компьютер" нетрудно проиллюстрировать инкапсуляцию следующим образом. Основным субъектом, который взаимодействует с объектами этого класса, является пользователь. Вполне очевидно, что не каждый пользователь в совершенстве знает внутреннее устройство того или иного компьютера. К тому же, отдельные детали этого устройства сознательно скрыты в корпусе системного блока или монитора. А в случае нарушения работы компьютера, которое является причиной неадекватности его поведения, необходимый ремонт выполняет профессиональный специалист.

Инкапсуляция ведет свое происхождение от деления модулей в некоторых языках программирования на две части или секции: интерфейс и реализацию. При этом в интерфейсной секции модуля описываются все объявления функций и процедур, а возможно и типов данных, доступных за пределами модуля. Указанные процедуры и функции являются способами оказания услуг внешним клиентам. В другой секции модуля, называемой реализацией, содержится программный код, который определяет конкретные способы реализации объявленных в интерфейсной части процедур и функций.

Полиморфизм также один из основных принципов ООП. Под полиморфизмом (греч. Poly - много, morfos - форма) понимается свойство объектов принимать различные внешние формы в зависимости от обстоятельств. Применительно к ООП полиморфизм означает, что действия, выполняемые одноименными методами, могут различаться в зависимости от того, к какому из классов относится тот или иной метод.

К примеру, три объекта соответствующих классов: двигатель автомобиля, электрический свет в комнате и персональный компьютер.




Для каждого из них можно определить операцию выключить(). Однако результат выполнения этой операции будет отличаться для каждого из рассмотренных объектов. Так для двигателя автомобиля выполнение операции выключить() означает прекращение подачи топлива и его остановку. Выполнение операции выключить() для электрического света в комнате означает простой щелчок выключателя, после чего комната погружается в темноту. В последнем случае для персонального компьютера выполнение операции выключить() может быть причиной потери данных, если производится нерегламентированным образом.

Полиморфизм объектно-ориентированных языков связан с перегрузкой функций, но не тождествен ей. Важно иметь в виду, что имена методов и свойств тесно связаны с классами, в которых они описаны. Это обстоятельство обеспечивает определенную надежность работы программы, поскольку исключает случайное применение метода для решения несвойственной ему задачи.

Наиболее существенным обстоятельством в развитии методологии ООП явилось осознание того, что процесс написания программного кода может быть отделен от процесса проектирования структуры программы. Прежде, чем начать программирование классов, их свойств и методов, необходимо определить сами эти классы. Более того, нужно дать ответы на следующие вопросы: сколько и какие классы нужно определить для решения поставленной задачи, какие свойства и методы необходимы для придания классам требуемого поведения, а также установить взаимосвязи между классами. Эта совокупность задач не столько связана с написанием кода, сколько с общим анализом требований к будущей программе, а также с анализом конкретной предметной области, для которой разрабатывается программа. Все эти обстоятельства привели к появлению специальной методологии, получившей название методологии объектно-ориентированного анализа и проектирования (ООАП).


Основные этапы развития языка UML


Отдельные языки объектно-ориентированного моделирования начали появляться в середине 1970-х годов, когда различные исследователи и программисты предлагали свои подходы к ООАП. В период между 1989 -1994 гг. общее число наиболее известных языков моделирования возросло с 10 до более чем 50. Многие пользователи испытывали серьезные затруднения при выборе языка ООАП, поскольку ни один из них не удовлетворял всем требованиям, предъявляемым к построению моделей сложных систем. Принятие отдельных методик и графических нотаций в качестве стандартов (IDEF0, IDEF1X) не смогло изменить сложившуюся ситуацию непримиримой конкуренции между ними в начале 90-х годов, которая получила название "войны методов".

К середине 1990-х некоторые методы были существенно улучшены и приобрели самостоятельное значение при решении различных задач ООАП. Наиболее известными в этот период становятся:

Метод Гради Буча (Grady Booch), получивший условное название Booch или Booch'91, Booch Lite (позже - Booch'93)Метод Джеймса Румбаха (James Rumbaugh), наименованный Object Modeling Technique - OMT (позже - OMT-2)Метод Айвара Джекобсона (Ivar Jacobson), под названием Object-Oriented Software Engineering - OOSE

Каждый из этих методов был ориентирован на поддержку отдельных этапов ООАП. Например, метод OOSE содержал средства представления вариантов использования, которые имеют существенное значение на этапе анализа требований в процессе проектирования бизнес-приложений. Метод OMT-2 наиболее подходил для анализа процессов обработки данных в информационных системах. Метод Booch'93 нашел широкое применение на этапах проектирования и разработки различных программных систем.

История развития языка UML берет начало с октября 1994 года, когда Гради Буч и Джеймс Румбах из компании Rational Software Corporation начали работу по унификации методов Booch и OMT. Несмотря на то, что сами по себе эти методы были достаточно популярны, совместная работа была направлена на изучение всех известных объектно-ориентированных методов с целью объединения их достоинств.
При этом Г. Буч и Дж. Румбах сосредоточили усилия на полной унификации результатов своей работы. Проект так называемого унифицированного метода (Unified Method) версии 0.8 был подготовлен и опубликован в октябре 1995 года. Осенью того же года к ним присоединился А. Джекобсон, главный технолог компании Objectory AB (Швеция), с целью интеграции своего метода OOSE с двумя предыдущими.

В этот период поддержка разработки языка UML становится одной из целей консорциума OMG (Object Management Group), который был образован еще в 1989 году с целью разработки предложений по стандартизации объектных и компонентных технологий CORBA. В то время язык UML приобрел статус второго стратегического направления в работе OMG. Именно в OMG создается команда разработчиков под руководством Р. Соли, которая обеспечила дальнейшую работу по унификации и стандартизации языка UML. Усилия группы разработчиков, в которую входили также Г. Буч, Дж. Румбах и А. Джекобсон, привели к появлению первых документов, содержащих собственно описание языка UML версии 0.9 (июнь 1996 г.) и версии 0.91 (октябрь 1996 г.).

Тогда же некоторые компании и организации увидели в языке UML стратегический интерес для своего бизнеса. Компания Rational Software вместе с несколькими организациями, изъявившими желание выделить ресурсы для разработки строгого определения версии 1.0 языка UML, учредила консорциум партнеров UML, в который первоначально вошли такие фирмы, как Digital Equipment Corp., HP, i-Logix, Intellicorp, IBM, ICON Computing, MCI Systemhouse, Microsoft, Oracle, Rational Software, TI и Unisys. Эти компании обеспечили поддержку последующей работы по более точному определению нотации.

В январе 1997 года был опубликован документ с описанием языка UML 1.0, как начальный вариант ответа на запрос предложений RTP. Эта версия языка моделирования была достаточно хорошо определена, обеспечивала требуемую выразительность и мощность, предполагала решение широкого класса задач. В результате работы инициативной группы в составе OMG была предложена пересмотренная версия 1.1 языка UML.


Основное внимание при разработке языка UML 1.1 было уделено достижению большей ясности семантики по сравнению с UML 1.0, а также учету предложений новых партнеров. Эта версия языка была представлена на рассмотрение OMG, затем одобрена и принята в качестве стандарта OMG в ноябре 1997 года. История разработки и последующего развития языка UML графически представлена на рис. 1.4.


Рис. 1.4.  История развития языка UML

На момент написания данного курса лекций текущей версией языка UML является версия 1.5, принятая консорциумом OMG в марте 2003 г. В августе-сентябре 2003 г. был опубликован проект языка UML 2.0, но эта версия до настоящего времени официально не принята. Единственное инструментальное средство из доступных автору на конец 2004 г., в котором реализована нотация проекта языка UML 2.0, - это CASE-средство Together 2005 компании Borland. Поскольку проект языка UML 2.0 вносит серьезные изменения в существующий стандарт языка UML 1.5, в Together 2005 реализована поддержка проектов обеих нотаций языка UML версий 1.4 и 2.0. По всей видимости, поддержка языка UML версий 1.4-1.5 сохранится и в новых CASE-средствах других разработчиков, в частности IBM Rational и Microsoft.

В настоящее время все вопросы дальнейшей разработки языка UML сконцентрированы в рамках консорциума OMG. При этом статус языка UML определен как открытый для всех предложений по его доработке и совершенствованию. Сам язык UML не является чьей-либо собственностью и не запатентован кем-либо, хотя указанный выше документ защищен законом об авторском праве. В тоже время аббревиатура UML, как и некоторые другие (OMG, CORBA, ORB), является торговой маркой их законных владельцев, о чем следует упомянуть в данном контексте.

На рынке CASE-средств представлены десятки программных инструментов, поддерживающих нотацию языка UML 1.4-1.5 и обеспечивающих интеграцию, включая прямую и обратную генерацию кода программ, с наиболее распространенными языками и средами программирования, такими как MS Visual C++, Java, Object Pascal/Delphi, Power Builder, MS Visual Basic, Forte, Ada, Smalltalk.

С каждым годом интерес к языку UML со стороны специалистов неуклонно возрастает. Язык UML повсеместно становится не только основой для разработки и реализации во многих перспективных инструментальных RAD-средcтвах, но и в CASE-средствах визуального и имитационного моделирования. Более того, заложенные в языке UML потенциальные возможности широко используются как для объектно-ориентированного моделирования систем, так и для документирования бизнес-процессов, а в более широком контексте - для представления знаний в интеллектуальных системах, которыми, по существу, станут перспективные сложные программно-технологические комплексы.


Канонические диаграммы языка UML


В рамках языка UML все представления о модели сложной системы фиксируются в виде специальных графических конструкций, получивших название диаграмм.

Диаграмма (diagram) — графическое представление совокупности элементов модели в форме связного графа, вершинам и ребрам (дугам) которого приписывается определенная семантика. Нотация канонических диаграмм - основное средство разработки моделей на языке UML.

В нотации языка UML определены следующие виды канонических диаграмм:

вариантов использования (use case diagram) классов (class diagram) кооперации (collaboration diagram) последовательности (sequence diagram) состояний (statechart diagram) деятельности (activity diagram) компонентов (component diagram) развертывания (deployment diagram)

Перечень этих диаграмм и их названия являются каноническими в том смысле, что представляют собой неотъемлемую часть графической нотации языка UML. Более того, процесс ООАП неразрывно связан с процессом построения этих диаграмм. При этом совокупность построенных таким образом диаграмм является самодостаточной в том смысле, что в них содержится вся информация, которая необходима для реализации проекта сложной системы.

Каждая из этих диаграмм детализирует и конкретизирует различные представления о модели сложной системы в терминах языка UML. При этом диаграмма вариантов использования представляет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм. Диаграмма классов, по своей сути, логическая модель, отражающая статические аспекты структурного построения сложной системы.

Диаграммы кооперации и последовательностей представляют собой разновидности логической модели, которые отражают динамические аспекты функционирования сложной системы. Диаграммы состояний и деятельности предназначены для моделирования поведения системы. И, наконец, диаграммы компонентов и развертывания служат для представления физических компонентов сложной системы и поэтому относятся к ее физической модели.


В целом интегрированная модель сложной системы в нотации UML может быть представлена в виде совокупности указанных выше диаграмм (рис. 2.7).


Рис. 2.7.  Интегрированная модель сложной системы в нотации UML

Кроме графических элементов, которые определены для каждой канонической диаграммы, на них может быть изображена текстовая информация, которая расширяет семантику базовых элементов. В языке UML предусмотрены три специальных механизма расширения, которые включают в себя следующие конструкции.

Стереотип (stereotype) — новый тип элемента модели, который расширяет семантику метамодели. Стереотипы должны основываться на уже существующих и описанных в метамодели языка UML типах или классах.

Стереотипы предназначены для расширения именно семантики, но не структуры уже описанных типов или классов. Некоторые стереотипы предопределены в языке UML, другие могут быть указаны разработчиком. На диаграммах изображаются в форме текста, заключенного в угловые кавычки. Предопределенные стереотипы являются ключевыми словами языка UML, которые используются на канонических диаграммах на языке оригинала без их перевода.

Помеченное значение (tagged value) — явное определение свойства как пары "имя – значение". В помеченном значении само имя называют тегом (tag).

Помеченные значения на диаграммах изображаются в форме строки текста специального формата, заключенного в фигурные скобки. При этом используется следующий формат записи: {тег = значение}. Теги встречаются в нотации языка UML, но их определение не является строгим, поэтому теги могут быть указаны самим разработчиком.

Ограничение (constraint) — некоторое логическое условие, ограничивающее семантику выбранного элемента модели.

Как правило, все ограничения специфицируются разработчиком. Ограничения на диаграммах изображаются в форме строки текста, заключенного в фигурные скобки. Для формальной записи ограничений предназначен специальный язык объектных ограничений (Object Constraint Language, OCL), который является составной частью языка UML.

В последующих лекциях канонические диаграммы рассматриваются более подробно.


Общая характеристика моделей объектно-ориентированного анализа и проектирования


Язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML является достаточно строгим и мощным средством моделирования, которое может быть эффективно использовано для построения концептуальных, логических и графических моделей сложных систем различного целевого назначения. Этот язык вобрал в себя наилучшие качества и опыт методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем.

С точки зрения методологии ООАП достаточно полная модель сложной системы представляет собой определенное число взаимосвязанных представлений (views), каждое из которых адекватно отражает аспект поведения или структуры системы. При этом наиболее общими представлениями сложной системы принято считать статическое и динамическое, которые в свою очередь могут подразделяться на другие более частные.

Принцип иерархического построения моделей сложных систем предписывает рассматривать процесс построения моделей на разных уровнях абстрагирования или детализации в рамках фиксированных представлений.

Уровень представления (layer) — способ организации и рассмотрения модели на одном уровне абстракции, который представляет горизонтальный срез архитектуры модели, в то время как разбиение представляет ее вертикальный срез.

При этом исходная или первоначальная модель сложной системы имеет наиболее общее представление и относится к концептуальному уровню. Такая модель, получившая название концептуальной, строится на начальном этапе проектирования и может не содержать многих деталей и аспектов моделируемой системы. Последующие модели конкретизируют концептуальную модель, дополняя ее представлениями логического и физического уровня.

В целом же процесс ООАП можно рассматривать как последовательный переход от разработки наиболее общих моделей и представлений концептуального уровня к более частным и детальным представлениям логического и физического уровня.
При этом на каждом этапе ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы. Общая схема взаимосвязей моделей ООАП представлена на рис. 2.1.


Рис. 2.1.  Общая схема взаимосвязей моделей и представлений сложной системы в процессе объектно-ориентированного анализа и проектирования

Для описания языка UML используются средства самого языка. К базовым средствам относится пакет, который служит для группировки элементов модели. При этом сами элементы модели, в том числе произвольные сущности, отнесенные к одному пакету, выступают в роли единого целого. При этом все разновидности элементов графической нотации языка UML организованы в пакеты.



При этом на каждом этапе ООАП данные модели последовательно дополняются все большим количеством деталей, что позволяет им более адекватно отражать различные аспекты конкретной реализации сложной системы. Общая схема взаимосвязей моделей ООАП представлена на рис. 2.1.


Рис. 2.1.  Общая схема взаимосвязей моделей и представлений сложной системы в процессе объектно-ориентированного анализа и проектирования

Для описания языка UML используются средства самого языка. К базовым средствам относится пакет, который служит для группировки элементов модели. При этом сами элементы модели, в том числе произвольные сущности, отнесенные к одному пакету, выступают в роли единого целого. При этом все разновидности элементов графической нотации языка UML организованы в пакеты.


Особенности графического изображения диаграмм языка UML


Большинство перечисленных выше диаграмм являются в своей основе графами специального вида, состоящими из вершин в форме геометрических фигур, которые связаны между собой ребрами или дугами. Поскольку информация, которую содержит в себе граф, носит топологический характер, ни геометрические размеры, ни расположение элементов диаграмм не имеют принципиального значения.

Для диаграмм языка UML существуют три типа визуальных графических обозначений, которые важны с точки зрения заключенной в них информации:

Геометрические фигуры на плоскости, играющие роль вершин графов соответствующих диаграмм. При этом сами геометрические фигуры выступают в роли графических примитивов языка UML, а форма этих фигур (прямоугольник, эллипс) должна строго соответствовать изображению отдельных элементов языка UML (класс, вариант использования, состояние, деятельность). Графические примитивы языка UML имеют фиксированную семантику, переопределять которую пользователям не допускается. Графические примитивы должны иметь собственные имена, а, возможно, и другой текст, который содержится внутри границ соответствующих геометрических фигур или, как исключение, вблизи этих фигур. Графические взаимосвязи, которые представляются различными линиями на плоскости. Взаимосвязи в языке UML обобщают понятие дуг и ребер из теории графов, но имеют менее формальный характер и более развитую семантику. Специальные графические символы, изображаемые вблизи от тех или иных визуальных элементов диаграмм и имеющие характер дополнительной спецификации (украшений).

Все диаграммы в языке UML изображаются с использованием фигур на плоскости. Отдельные элементы - с помощью геометрических фигур, которые могут иметь различную высоту и ширину с целью размещения внутри них других конструкций языка UML. Наиболее часто внутри таких символов помещаются строки текста, которые уточняют семантику или фиксируют отдельные свойства соответствующих элементов языка UML. Информация, содержащаяся внутри фигур, имеет значение для конкретной модели проектируемой системы, поскольку регламентирует реализацию соответствующих элементов в программном коде.


Пути представляют собой последовательности из отрезков линий, соединяющих отдельные графические символы. При этом концевые точки отрезков линий должны обязательно соприкасаться с геометрическими фигурами, служащими для обозначения вершин диаграмм, как принято в теории графов. С концептуальной точки зрения путям в языке UML придается особое значение, поскольку это простые топологические сущности. Отдельные части пути или сегменты могут не существовать вне содержащего их пути. Пути всегда соприкасаются с другими графическими символами на обеих границах соответствующих отрезков линий, т.е. пути не могут обрываться на диаграмме линией, которая не соприкасается ни с одним графическим символом. Как отмечалось выше, пути могут иметь в качестве окончания или терминатора специальную графическую фигуру – значок, который изображается на одном из концов линий.

Дополнительные значки или украшения представляют собой графические фигуры фиксированного размера и формы. Они не могут увеличивать свои размеры, чтобы разместить внутри себя дополнительные символы. Значки размещаются как внутри других графических конструкций, так и вне их. Примерами значков могут служить окончания связей элементов диаграмм или графические обозначения кванторов видимости атрибутов и операций классов.

Строки текста служат для представления различных видов информации в грамматической форме. Предполагается, что каждое использование строки текста должно соответствовать синтаксису в нотации языка UML. В отдельных случаях может быть реализован грамматический разбор этой строки, который необходим для получения дополнительной информации о модели. Например, строки текста в различных секциях обозначения класса могут соответствовать атрибутам этого класса или его операциям. На использование строк накладывается условие: требуется, чтобы семантика всех допустимых символов была заранее определена в языке UML или служила предметом его расширения в конкретной модели.


Пакеты в языке UML


Пакет (package) — общецелевой механизм для организации различных элементов модели в множество, реализующий системный принцип декомпозиции модели сложной системы и допускающий вложенность пакетов друг в друга.

Пакет – основной способ организации элементов модели в языке UML. Каждый пакет владеет всеми своими элементами, т. е. теми элементами, которые включены в него. Про соответствующие элементы пакета говорят, что они принадлежат пакету или входят в него. При этом каждый элемент может принадлежать только одному пакету. В свою очередь, одни пакеты могут быть вложены в другие.

Подпакет (subpackage) — пакет, который является составной частью другого пакета.

По определению все элементы подпакета принадлежат и более общему пакету. Тем самым для элементов модели задается отношение вложенности пакетов, которое представляет собой иерархию.

Для графического изображения пакетов на диаграммах применяется специальный графический символ – большой прямоугольник с небольшим прямоугольником, присоединенным к левой части верхней стороны первого (рис. 2.2 а, б). Можно сказать, что визуально символ пакета напоминает пиктограмму папки в популярном графическом интерфейсе. Внутри большого прямоугольника может записываться информация, относящаяся к данному пакету. Если такой информации нет, то внутри большого прямоугольника записывается имя пакета, которое должно быть уникальным в пределах рассматриваемой модели (рис. 2.2, а). Если же такая информация имеется, то имя пакета записывается в верхнем маленьком прямоугольнике (рис. 2.2, б).


Рис. 2.2.  Графическое изображение пакетов в языке UML

Перед именем пакета может помещаться строка текста, содержащая ключевое слово, заранее определенное в языке UML, и называемое стереотипом, например facade, framework, stub и topLevel. В качестве содержимого пакета могут выступать имена его отдельных элементов и их свойства, такие как видимость элементов за пределами пакета. Более подробно стереотипы и видимость элементов будут рассмотрены в последующих лекциях.


Одним из типов отношений между пакетами является отношение вложенности или включения пакетов друг в друга. В языке UML это отношение может быть изображено без использования линий простым размещением одного пакета-прямоугольника внутри другого пакета-прямоугольника (рис. 2.3). Так, в данном случае пакет с именем Пакет_1 содержит в себе два подпакета: Пакет_2 и Пакет_3.


Рис. 2.3.  Графическое изображение вложенности пакетов друг в друга

Кроме того в языке UML это же отношение может быть изображено с помощью отрезков линий аналогично графическому представлению дерева. В этом случае наиболее общий пакет или контейнер изображается в верхней части рисунка, а его подпакеты – уровнем ниже. Контейнер соединяется с подпакетами сплошной линией, на конце которой, примыкающей к контейнеру, изображается специальный символ –
. Он означает, что подпакеты "собственность" или часть контейнера, и, кроме этих подпакетов, контейнер не содержит никаких других. Рассмотренный выше пример (рис.2.3) может быть представлен с помощью явной визуализации отношения включения (рис. 2.4).


Рис. 2.4.  Графическое изображение языка UML для вложенности пакетов друг в друга с помощью явной визуализации отношения включения

Модель является подклассом пакета и представляет собой абстракцию физической системы, которая предназначена для вполне определенной цели. Именно эта цель предопределяет те компоненты, которые должны быть включены в модель и те, рассмотрение которых не является обязательным. Другими словами, модель отражает релевантные аспекты физической системы, оказывающие непосредственное влияние на достижение поставленной цели. В прикладных задачах цель обычно задается в форме исходных требований к системе, которые, в свою очередь, в языке UML записываются в виде вариантов использования системы.

В языке UML для одной и той же физической системы могут быть определены различные модели, каждая из которых специфицирует систему с различных точек зрения.


Примерами таких моделей являются логическая модель, модель проектирования, модель вариантов использования и другие. При этом каждая такая модель имеет собственную точку зрения на физическую систему и свой уровень абстракции. Модели, как и пакеты, могут быть вложены друг в друга. Пакет может включать в себя несколько различных моделей одной и той же системы, и в этом состоит один из важнейших механизмов разработки моделей на языке UML. Общая модель системы в контексте языка UML содержит в себе модель анализа и модель проектирования, что явно отражает связь с ООАП (рис. 2.5).


Рис. 2.5.  Изображение модели системы в виде пакетов моделей анализа и проектирования

Подсистема есть просто группировка элементов модели, которые специфицируют простейшее поведение физической системы. При этом элементы подсистемы делятся на две части – спецификацию поведения и его реализацию. Для графического представления подсистемы применяется специальное обозначение – прямоугольник, как в случае пакета, но дополнительно разделенный на три секции (рис.2.6). При этом в верхнем маленьком прямоугольнике изображается символ, по своей форме напоминающий "вилку" и указывающий на подсистему. Имя подсистемы вместе с необязательным ключевым словом или стереотипом записывается внутри большого прямоугольника. Однако при наличии строк текста внутри большого прямоугольника имя подсистемы может быть записано рядом с обозначением "вилки".


Рис. 2.6.  Графическое изображение подсистемы в языке UML

Операции подсистемы записываются в левой верхней секции, ниже указываются элементы спецификации, а справа от вертикальной линии – элементы реализации. При этом два последних раздела помечаются соответствующими метками: "Элементы спецификации" и "Элементы реализации". Секция операций никак не помечается. Если в подсистеме отсутствуют те или иные секции, то они не отображаются на схеме.


Рекомендации по графическому изображению диаграмм языка UML


При графическом изображении диаграмм следует придерживаться следующих основных рекомендаций:

Каждая диаграмма должна служить законченным представлением соответствующего фрагмента моделируемой предметной области. Речь идет о том, что в процессе разработки диаграммы необходимо учесть все сущности, важные с точки зрения контекста данной модели и диаграммы. Отсутствие тех или иных элементов на диаграмме служит признаком неполноты модели и может потребовать ее последующей доработки. Все сущности на диаграмме модели должны быть одного уровня представления. Здесь имеется в виду согласованность не только имен одинаковых элементов, но и возможность вложения отдельных диаграмм друг в друга для достижения полноты представлений. В случае достаточно сложных моделей систем желательно придерживаться стратегии последовательного уточнения или детализации отдельных диаграмм. Вся информация о сущностях должна быть явно представлена на диаграммах. В языке UML при отсутствии некоторых символов на диаграмме могут быть использованы их значения по умолчанию (например, в случае неявного указания видимости атрибутов и операций классов), тем не менее, необходимо стремиться к явному указанию свойств всех элементов диаграмм. Диаграммы не должны содержать противоречивой информации. Противоречивость модели может служить причиной серьезных проблем при ее реализации и последующем использовании на практике. Например, наличие замкнутых путей при изображении отношений агрегирования или композиции приводит к ошибкам в программном коде, который будет реализовывать соответствующие классы. Наличие элементов с одинаковыми именами и различными атрибутами свойств в одном пространстве имен также приводит к неоднозначной интерпретации и может быть источником проблем. Каждая диаграмма должна быть самодостаточной для правильной интерпретации всех ее элементов и понимания семантики всех используемых графических символов. Любые пояснительные тексты, которые не являются собственными элементами диаграммы (например, комментариями), не должны приниматься во внимание разработчиками.
В то же время общие фрагменты диаграмм могут уточняться или детализироваться на других диаграммах этого же типа, образуя вложенные или подчиненные диаграммы. Таким образом, модель системы на языке UML представляет собой пакет иерархически вложенных диаграмм, детализация которых должна быть достаточной для последующей генерации программного кода, реализующего проект соответствующей системы. Количество типов диаграмм для конкретной модели приложения строго не фиксировано. Для простых приложений нет необходимости строить все без исключения типы диаграмм. Некоторые из них могут просто отсутствовать в проекте системы, и это не будет считаться ошибкой разработчика. Например, модель системы может не содержать диаграмму развертывания для приложения, выполняемого локально на компьютере пользователя. Важно понимать, что перечень диаграмм зависит от специфики конкретного проекта системы. Любая модель системы должна содержать только те элементы, которые определены в нотации языка UML. Имеется в виду требование начинать разработку проекта, используя только те конструкции, которые уже определены в метамодели UML. Как показывает практика, этих конструкций вполне достаточно для представления большинства типовых проектов программных систем. И только при отсутствии необходимых базовых элементов языка UML следует использовать механизмы их расширения для адекватного представления конкретной модели системы. Не допускается переопределение семантики тех элементов, которые отнесены к базовой нотации метамодели языка UML.

В заключение этой лекции следует отметить, что наличие в инструментальных CASE-средствах встроенной поддержки визуализации различных диаграмм языка UML позволяет в некоторой степени исключить ошибочное использование графических символов, а также контролировать уникальность имен элементов диаграмм. Однако, поскольку вся ответственность за окончательный контроль непротиворечивости модели лежит на разработчике, необходимо помнить, что недостаточно формальный характер языка UML и возможность его расширения может служить источником потенциальных ошибок, которые в полном объеме вряд ли будут выявлены инструментальными средствами.Именно это обстоятельство требует от всех разработчиков глубокого знания нотации и семантики всех элементов языка UML.


Диаграмма вариантов использования


Визуальное моделирование с использованием нотации UML можно представить как процесс поуровневого спуска от наиболее общей и абстрактной концептуальной модели исходной бизнес-системы к логической, а затем и к физической модели соответствующей программной системы. Для достижения этих целей вначале строится модель в форме так называемой диаграммы вариантов использования (use case diagram), которая описывает функциональное назначение системы или, другими словами, то, что бизнес-система должна делать в процессе своего функционирования.

Диаграмма вариантов использования (use case diagram) — диаграмма, на которой изображаются отношения между актерами и вариантами использования.

Диаграмма вариантов использования - это исходное концептуальное представление или концептуальная модель системы в процессе ее проектирования и разработки. Создание диаграммы вариантов использования имеет следующие цели:

Определить общие границы и контекст моделируемой предметной области на начальных этапах проектирования системы Сформулировать общие требования к функциональному поведению проектируемой системы Разработать исходную концептуальную модель системы для ее последующей детализации в форме логических и физических моделей Подготовить исходную документацию для взаимодействия разработчиков системы с ее заказчиками и пользователями

Назначение данной диаграммы состоит в следующем: проектируемая программная система представляется в форме так называемых вариантов использования, с которыми взаимодействуют внешние сущности или актеры. При этом актером или действующим лицом называется любой объект, субъект или система, взаимодействующая с моделируемой бизнес-системой извне. Это может быть человек, техническое устройство, программа или любая другая система, которая служит источником воздействия на моделируемую систему так, как определит разработчик. Вариант использования служит для описания сервисов, которые система предоставляет актеру. Другими словами каждый вариант использования определяет набор действий, совершаемый системой при диалоге с актером.
При этом ничего не говорится о том, каким образом будет реализовано взаимодействие актеров с системой и собственно выполнение вариантов использования.

Рассматривая диаграмму вариантов использования в качестве модели бизнес-системы, можно ассоциировать ее с "черным ящиком". Концептуальный характер этой диаграммы проявляется в том, что подробная детализация диаграммы или включение в нее элементов физического уровня представления на начальном этапе проектирования скорее имеет отрицательный характер, поскольку предопределяет способы реализации поведения системы. Эти аспекты должны быть сознательно скрыты от разработчика на диаграмме вариантов использования.

В самом общем случае, диаграмма вариантов использования представляет собой граф специального вида, который является графической нотацией для представления конкретных вариантов использования, актеров и отношений между этими элементами. При этом отдельные элементы диаграммы заключают в прямоугольник, который обозначает границы проектируемой системы. В то же время отношения, которые могут быть изображены на данном графе, представляют собой только фиксированные типы взаимосвязей между актерами и вариантами использования, которые в совокупности описывают сервисы или функциональные требования к моделируемой системе.

Базовыми элементами диаграммы вариантов использования являются вариант использования и актер.

Вариант использования (use case) — внешняя спецификация последовательности действий, которые система или другая сущность могут выполнять в процессе взаимодействия с актерами.

Вариант использования представляет собой спецификацию общих особенностей поведения или функционирования моделируемой системы без рассмотрения внутренней структуры этой системы. Несмотря на то, что каждый вариант использования определяет последовательность действий, которые должны быть выполнены проектируемой системой при взаимодействии ее с соответствующим актером, сами эти действия не изображаются на рассматриваемой диаграмме.

Содержание варианта использования может быть представлено в форме дополнительного пояснительного текста, который раскрывает смысл или семантику действий при выполнении данного варианта использования.


Такой пояснительный текст получил название текста-сценария или просто сценария. Далее в этой главе рассматривается один из шаблонов, который может быть рекомендован для написания сценариев вариантов использования.

Отдельный вариант использования обозначается на диаграмме эллипсом, внутри которого содержится его краткое имя в форме существительного (рис. 3.1, а) или глагола (рис. 3.1, б) с пояснительными словами. Сам текст имени варианта использования должен начинаться с заглавной буквы.

Имя (name) — строка текста, которая используется для идентификации любого элемента модели.


Рис. 3.1.  Графическое обозначение варианта использования

Цель спецификации варианта использования заключается в том, чтобы зафиксировать некоторый аспект или фрагмент поведения проектируемой системы без указания особенностей реализации данной функциональности. В этом смысле каждый вариант использования соответствует отдельному сервису, который предоставляет моделируемая система по запросу актера, т. е. определяет один из способов применения системы. Сервис, который инициализируется по запросу актера, должен представлять собой законченную последовательность действий. Это означает, что после того как система закончит обработку запроса актера, она должна возвратиться в исходное состояние, в котором снова готова к выполнению следующих запросов.

Диаграмма вариантов использования содержит конечное множество вариантов использования, которые в целом должны определять все возможные стороны ожидаемого поведения системы. Для удобства множество вариантов использования может рассматриваться как отдельный пакет. Применение вариантов использования на всех этапах работы над проектом позволяет не только достичь требуемого уровня унификации обозначений для представления функциональности подсистем и системы в целом, но и является мощным средством последовательного уточнения требований к проектируемой системе на основе их итеративного обсуждения со всеми заинтересованными специалистами.



Примерами вариантов использования могут быть следующие действия: проверка состояния текущего счета клиента, оформление заказа на покупку товара, получение дополнительной информации о кредитоспособности клиента, отображение графической формы на экране монитора и другие действия.

Актер (actor) — согласованное множество ролей, которые играют внешние сущности по отношению к вариантам использования при взаимодействии с ними.

Актер представляет собой любую внешнюю по отношению к моделируемой системе сущность, которая взаимодействует с системой и использует ее функциональные возможности для достижения определенных целей или решения частных задач. Каждый актер может рассматриваться как некая отдельная роль относительно конкретного варианта использования. Стандартным графическим обозначением актера на диаграммах является фигурка "человечка", под которой записывается имя актера (рис. 3.2).


Рис. 3.2.  Графическое обозначение актера

В некоторых случаях актер может обозначаться в виде прямоугольника класса со стереотипом <<actor>> и обычными составляющими элементами класса. Имена актеров должны начинаться с заглавной буквы и следовать рекомендациям использования имен для типов и классов модели. При этом символ отдельного актера связывает соответствующее описание актера с конкретным именем.

Имя актера должно быть достаточно информативным с точки зрения семантики. Для этой цели подходят наименования должностей в компании (например, продавец, кассир, менеджер, президент). Не рекомендуется давать актерам имена собственные или названия моделей конкретных устройств, даже если это с очевидностью следует из контекста проекта. Дело в том, что одно и то же лицо может выступать в нескольких ролях и, соответственно, обращаться к различным сервисам системы.

Актеры используются для моделирования внешних по отношению к проектируемой системе сущностей, которые взаимодействуют с системой. В качестве актеров могут выступать другие системы, в том числе подсистемы проектируемой системы или ее отдельные классы.


Важно понимать, что каждый актер определяет согласованное множество ролей, в которых могут выступать пользователи данной системы в процессе взаимодействия с ней. В каждый момент времени с системой взаимодействует вполне определенный пользователь, при этом он играет или выступает в одной из таких ролей. Наиболее наглядный пример актера — конкретный посетитель web-сайта в Интернет со своими параметрами аутентификации.

Поскольку в общем случае актер всегда находится вне системы, его внутренняя структура никак не определяется. Для актера имеет значение только его внешнее представление, т. е. то, как он воспринимается со стороны системы. Актеры взаимодействуют с системой посредством передачи и приема сообщений от вариантов использования. Сообщение представляет собой запрос актером сервиса от системы и получение этого сервиса. Это взаимодействие может быть выражено посредством ассоциаций между отдельными актерами и вариантами использования. Кроме этого, с актерами могут быть связаны интерфейсы, которые определяют, каким образом другие элементы модели взаимодействуют с этими актерами.


Дополнительные обозначения языка UML для бизнес-моделирования


Язык UML включает в себя специальные механизмы расширения, которые позволяют ввести в рассмотрение дополнительные графические обозначения, ориентированные для решения задач из определенной предметной области. Примеры подобных обозначений, которые используются для моделирования бизнес-систем и могут быть изображены на диаграммах вариантов использования: бизнес-актер, сотрудник и бизнес - вариант использования.

Бизнес-актер (business actor) – индивидуум, группа, организация, компания или система, которые взаимодействуют с моделируемой бизнес-системой, но не входят в нее, т.е. не являются частью моделируемой системы.

Графическое изображение бизнес-актера приводится на рис. 3.7, а. Примерами бизнес-актеров являются клиенты, покупатели, поставщики, партнеры. Общее свойство бизнес-актеров состоит в том, что они являются инициаторами или клиентами бизнес-процессов моделируемой системы.

Сотрудник (business worker) – индивидуум, который действует внутри моделируемой бизнес-системы, взаимодействует с другими сотрудниками и является участником бизнес-процесса моделируемой системы.

Графическое изображение сотрудника приводится на рис. 3.7, б. Примерами сотрудников являются менеджеры, администраторы, кассиры, инженеры. Общее свойство сотрудников заключается в том то, что они являются субъектами и входят в состав моделируемой системы.

Бизнес-вариант использования (business use case) — вариант использования, определяющий последовательность действий моделируемой системы, направленных на выполнение отдельного бизнес-процесса.

Графическое изображение бизнес-варианта использования приводится на рис. 3.7, в. Общее свойство бизнес-вариантов использования состоит в том, что они являются концептуальной моделью отдельных бизнес-процессов моделируемой системы.


Рис. 3.7.  Графические изображения бизнес-актера (а), бизнес-сотрудника (б) и бизнес-варианта использования (в)

Применение этих элементов графической нотации иллюстрирует пример представления диаграмм вариантов использования для системы продажи товаров в супермаркете.
Эта модель может быть использована при создании и автоматизации соответствующих информационных систем.

В качестве бизнес-актера данной системы можно рассматривать покупателя супермаркета, а в качестве сотрудника – продавца. При этом покупатель является клиентом сервиса "Оформление заказа на покупку товара", а продавец участвует в реализации соответствующего бизнес-процесса. Как следует из существа выдвигаемых к системе требований, этот сервис выступает в качестве базового бизнес-варианта использования данной системы.

С одной стороны, продажа товаров предполагает согласование условий оплаты с покупателем и заказ товара со склада. Поскольку эта функциональность выполняется всегда, она может быть выделена в самостоятельные бизнес-варианты использования, которые будут связаны с базовым отношением включения.

С другой стороны, продажа товаров может предполагать наличие отдельного информационного объекта — каталога товаров, который в некотором смысле не зависит от реализации сервиса по обслуживанию покупателей. В данном случае, каталог товаров может запрашиваться покупателем у продавца при необходимости выбора товара и уточнения его свойств. Вполне резонно представить сервис "Предоставление каталога товаров" в качестве самостоятельного бизнес-варианта использования.

Дальнейшая детализация данной модели может быть выполнена на основе установления дополнительных отношений , в частности отношения "обобщение-специализация" для уже имеющихся компонентов диаграммы вариантов использования. Так, в рамках рассматриваемой системы продажи товаров может иметь самостоятельное значение и специфические особенности отдельная категория товаров — телевизоры. В этом случае диаграмма дополняется вариантом использования "Оформление заказа на покупку телевизора", который связан с сервисом "Оформление заказа на покупку товара" отношением обобщения.

Полученная в результате диаграмма вариантов использования будет содержать 5 бизнес-вариантов использования, одного бизнес-актера и одного сотрудника, между которыми установлены соответствующие отношения включения, расширения и обобщения.


Эта диаграмма, изображенная в общих обозначениях нотации языка UML, представлена на рис. 3.8


Рис. 3.8.  Диаграмма вариантов использования для системы продажи товаров по каталогу в общих обозначениях языка UML

Анализируя рассматриваемую систему продажи товаров по каталогу, можно заметить, что она представляет собой концептуальную модель типичной бизнес-системы, особенности которой связаны с получением определенной прибыли от реализации соответствующих бизнес-процессов. При этом роли покупателя и продавца в рассматриваемой системе существенно отличаются. Действительно, покупатель является внешним по отношению к системе субъектом, в то время как продавец является частью бизнес-системы. Реализация рассмотренных вариантов использования не изображается на диаграммах вариантов использования. Для моделирования логических и физических аспектов реализации предназначены другие типы канонических диаграмм, которые будут рассмотрены в следующих лекциях.



© 2003-2007 INTUIT.ru. Все права защищены.

Отношения на диаграмме вариантов использования


Отношение (relationship) — семантическая связь между отдельными элементами модели.

Между элементами диаграммы вариантов использования могут существовать различные отношения, которые описывают взаимодействие экземпляров одних актеров и вариантов использования с экземплярами других актеров и вариантов. Один актер может взаимодействовать с несколькими вариантами использования. В этом случае этот актер обращается к нескольким сервисам данной системы. В свою очередь один вариант использования может взаимодействовать с несколькими актерами, предоставляя для всех них свой сервис.

В то же время два варианта использования, определенные в рамках одной моделируемой системы, также могут взаимодействовать друг с другом, однако характер этого взаимодействия будет отличаться от взаимодействия с актерами. Однако в обоих случаях способы взаимодействия элементов модели предполагают обмен сигналами или сообщениями, которые инициируют реализацию функционального поведения моделируемой системы.

В языке UML имеется несколько стандартных видов отношений между актерами и вариантами использования:

ассоциации (association relationship) включения (include relationship) расширения (extend relationship) обобщения (generalization relationship)

При этом общие свойства вариантов использования могут быть представлены тремя различными способами, а именно — с помощью отношений включения, расширения и обобщения.

Отношение ассоциации – одно из фундаментальных понятий в языке UML и в той или иной степени используется при построении всех графических моделей систем в форме канонических диаграмм. Применительно к диаграммам вариантов использования ассоциация служит для обозначения специфической роли актера при его взаимодействии с отдельным вариантом использования. Другими словами, ассоциация специфицирует семантические особенности взаимодействия актеров и вариантов использования в графической модели системы. На диаграмме вариантов использования, так же как и на других диаграммах, отношение ассоциации обозначается сплошной линией между актером и вариантом использования.
Эта линия может иметь некоторые дополнительные обозначения, например, имя и кратность (рис. 3.3).


Рис. 3.3.  Пример графического представления отношения ассоциации между актером и вариантом использования

В контексте диаграммы вариантов использования отношение ассоциации между актером и вариантом использования может указывать на то, что актер инициирует соответствующий вариант использования. Такого актера называют главным. В других случаях подобная ассоциация может указывать на актера, которому предоставляется справочная информация о результатах функционирования моделируемой системы. Таких актеров часто называют второстепенными. Более детальное описание семантических особенностей отношения ассоциации будет дано при рассмотрении других диаграмм в последующих лекциях.

Включение (include) в языке UML — это разновидность отношения зависимости между базовым вариантом использования и его специальным случаем. При этом отношением зависимости (dependency) является такое отношение между двумя элементами модели, при котором изменение одного элемента (независимого) приводит к изменению другого элемента (зависимого).

Отношение включения устанавливается только между двумя вариантами использования и указывает на то, что заданное поведение для одного варианта использования включается в качестве составного фрагмента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.

Так, например, отношение включения, направленное от варианта использования "Предоставление кредита в банке" к варианту использования "Проверка платежеспособности клиента", указывает на то, что каждый экземпляр первого варианта использования всегда включает в себя функциональное поведение или выполнение второго варианта использования. В этом смысле поведение второго варианта использования является частью поведения первого варианта использования на данной диаграмме.


Графически данное отношение обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от базового варианта использования к включаемому варианту использования. При этом данная линия помечается стереотипом <<include>>, как показано на рис. 3.4.


Рис. 3.4.  Пример графического изображения отношения включения между вариантами использования

Семантика этого отношения определяется следующим образом. Процесс выполнения базового варианта использования включает в себя как собственное подмножество последовательность действий, которая определена для включаемого варианта использования. При этом выполнение включаемой последовательности действий происходит всегда при инициировании базового варианта использования.

Один вариант использования может входить в несколько других вариантов, а также содержать в себе другие варианты. Включаемый вариант использования является независимым от базового варианта в том смысле, что он предоставляет последнему инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант зависит только от результатов выполнения включаемого в него варианта использования, но не от структуры включаемых в него вариантов.

Отношение расширения (extend) определяет взаимосвязь базового варианта использования с другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении дополнительных условий.

В языке UML отношение расширения является зависимостью, направленной к базовому варианту использования и соединенной с ним в так называемой точке расширения. Отношение расширения между вариантами использования обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от того варианта использования, который является расширением для базового варианта использования. Данная линия со стрелкой должна быть помечена стереотипом <<extend>>, как показано на рис. 3.5.




Рис. 3.5.  Пример графического изображения отношения расширения между вариантами использования

В изображенном фрагменте имеет место отношение расширения между базовым вариантом использования "Предоставление кредита в банке" и вариантом использования "Предоставление налоговых льгот". Это означает, что свойства поведения первого варианта использования в некоторых случаях могут быть дополнены функциональностью второго варианта использования. Для того чтобы это расширение имело место, должно быть выполнено определенное логическое условие данного отношения расширения.

Отношение расширения позволяет моделировать таким образом, что один из вариантов использования должен присоединять к своему поведению дополнительное поведение, определенное для другого варианта использования. В то же время данное отношение всегда предполагает проверку условия и ссылку на точку расширения в базовом варианте использования. Точка расширения определяет место в базовом варианте использования, в которое должно быть помещено расширение при выполнении соответствующего логического условия. При этом один из вариантов использования может быть расширением для нескольких базовых вариантов, а также иметь в качестве собственных расширений другие варианты. Базовый вариант использования не зависит от своих расширений.

Семантика отношения расширения определяется следующим образом. Если базовый вариант использования выполняет некоторую последовательность действий, которая определяет его поведение, и при этом имеется точка расширения на экземпляр другого варианта использования, которая является первой из всех точек расширения у базового варианта, то проверяется логическое условие данного отношения. Если это условие выполняется, исходная последовательность действий расширяется посредством включения действий другого варианта использования. Следует заметить, что условие отношения расширения проверяется лишь один раз — при первой ссылке на точку расширения, и если оно выполняется, то все расширяющие варианты использования вставляются в базовый вариант.



Два и более актера могут иметь общие свойства, т. е. взаимодействовать с одним и тем же множеством вариантов использования одинаковым образом. Такая общность свойств и поведения представляется в виде отношения обобщения с другим, возможно, абстрактным актером, который моделирует соответствующую общность ролей.

Графически отношение обобщения обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования (рис. 3.6). Эта линия со стрелкой имеет специальное название — стрелка-обобщение.


Рис. 3.6.  Пример графического изображения отношения обобщения между вариантами использования

В данном примере отношение обобщения указывает на то, что вариант использования "Предоставление кредита корпоративным клиентам" - специальный случай варианта использования "Предоставление кредита клиентам банка". Другими словами, первый вариант использования является специализацией второго варианта использования. При этом вариант использования "Предоставление кредита клиентам банка" еще называют предком или родителем по отношению к варианту использования "Предоставление кредита корпоративным клиентам", а последний вариант называют потомком по отношению к первому варианту использования. Следует подчеркнуть, что потомок наследует все свойства поведения своего родителя, а также может обладать дополнительными особенностями поведения.

Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми особенностями поведения родительских вариантов. При этом дочерние варианты использования участвуют во всех отношениях родительских вариантов. В свою очередь, дочерние варианты могут наделяться новыми свойствами поведения, которые отсутствуют у родительских вариантов использования, а также уточнять или модифицировать наследуемые от них свойства поведения.



Эта линия может иметь некоторые дополнительные обозначения, например, имя и кратность (рис. 3.3).


Рис. 3.3.  Пример графического представления отношения ассоциации между актером и вариантом использования

В контексте диаграммы вариантов использования отношение ассоциации между актером и вариантом использования может указывать на то, что актер инициирует соответствующий вариант использования. Такого актера называют главным. В других случаях подобная ассоциация может указывать на актера, которому предоставляется справочная информация о результатах функционирования моделируемой системы. Таких актеров часто называют второстепенными. Более детальное описание семантических особенностей отношения ассоциации будет дано при рассмотрении других диаграмм в последующих лекциях.

Включение (include) в языке UML — это разновидность отношения зависимости между базовым вариантом использования и его специальным случаем. При этом отношением зависимости (dependency) является такое отношение между двумя элементами модели, при котором изменение одного элемента (независимого) приводит к изменению другого элемента (зависимого).

Отношение включения устанавливается только между двумя вариантами использования и указывает на то, что заданное поведение для одного варианта использования включается в качестве составного фрагмента в последовательность поведения другого варианта использования. Данное отношение является направленным бинарным отношением в том смысле, что пара экземпляров вариантов использования всегда упорядочена в отношении включения.

Так, например, отношение включения, направленное от варианта использования "Предоставление кредита в банке" к варианту использования "Проверка платежеспособности клиента", указывает на то, что каждый экземпляр первого варианта использования всегда включает в себя функциональное поведение или выполнение второго варианта использования. В этом смысле поведение второго варианта использования является частью поведения первого варианта использования на данной диаграмме.


Графически данное отношение обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от базового варианта использования к включаемому варианту использования. При этом данная линия помечается стереотипом <<include>>, как показано на рис. 3.4.


Рис. 3.4.  Пример графического изображения отношения включения между вариантами использования

Семантика этого отношения определяется следующим образом. Процесс выполнения базового варианта использования включает в себя как собственное подмножество последовательность действий, которая определена для включаемого варианта использования. При этом выполнение включаемой последовательности действий происходит всегда при инициировании базового варианта использования.

Один вариант использования может входить в несколько других вариантов, а также содержать в себе другие варианты. Включаемый вариант использования является независимым от базового варианта в том смысле, что он предоставляет последнему инкапсулированное поведение, детали реализации которого скрыты от последнего и могут быть легко перераспределены между несколькими включаемыми вариантами использования. Более того, базовый вариант зависит только от результатов выполнения включаемого в него варианта использования, но не от структуры включаемых в него вариантов.

Отношение расширения (extend) определяет взаимосвязь базового варианта использования с другим вариантом использования, функциональное поведение которого задействуется базовым не всегда, а только при выполнении дополнительных условий.

В языке UML отношение расширения является зависимостью, направленной к базовому варианту использования и соединенной с ним в так называемой точке расширения. Отношение расширения между вариантами использования обозначается как отношение зависимости в форме пунктирной линии со стрелкой, направленной от того варианта использования, который является расширением для базового варианта использования. Данная линия со стрелкой должна быть помечена стереотипом <<extend>>, как показано на рис. 3.5.




Рис. 3.5.  Пример графического изображения отношения расширения между вариантами использования

В изображенном фрагменте имеет место отношение расширения между базовым вариантом использования "Предоставление кредита в банке" и вариантом использования "Предоставление налоговых льгот". Это означает, что свойства поведения первого варианта использования в некоторых случаях могут быть дополнены функциональностью второго варианта использования. Для того чтобы это расширение имело место, должно быть выполнено определенное логическое условие данного отношения расширения.

Отношение расширения позволяет моделировать таким образом, что один из вариантов использования должен присоединять к своему поведению дополнительное поведение, определенное для другого варианта использования. В то же время данное отношение всегда предполагает проверку условия и ссылку на точку расширения в базовом варианте использования. Точка расширения определяет место в базовом варианте использования, в которое должно быть помещено расширение при выполнении соответствующего логического условия. При этом один из вариантов использования может быть расширением для нескольких базовых вариантов, а также иметь в качестве собственных расширений другие варианты. Базовый вариант использования не зависит от своих расширений.

Семантика отношения расширения определяется следующим образом. Если базовый вариант использования выполняет некоторую последовательность действий, которая определяет его поведение, и при этом имеется точка расширения на экземпляр другого варианта использования, которая является первой из всех точек расширения у базового варианта, то проверяется логическое условие данного отношения. Если это условие выполняется, исходная последовательность действий расширяется посредством включения действий другого варианта использования. Следует заметить, что условие отношения расширения проверяется лишь один раз — при первой ссылке на точку расширения, и если оно выполняется, то все расширяющие варианты использования вставляются в базовый вариант.



Два и более актера могут иметь общие свойства, т. е. взаимодействовать с одним и тем же множеством вариантов использования одинаковым образом. Такая общность свойств и поведения представляется в виде отношения обобщения с другим, возможно, абстрактным актером, который моделирует соответствующую общность ролей.

Графически отношение обобщения обозначается сплошной линией со стрелкой в форме не закрашенного треугольника, которая указывает на родительский вариант использования (рис. 3.6). Эта линия со стрелкой имеет специальное название — стрелка-обобщение.


Рис. 3.6.  Пример графического изображения отношения обобщения между вариантами использования

В данном примере отношение обобщения указывает на то, что вариант использования "Предоставление кредита корпоративным клиентам" - специальный случай варианта использования "Предоставление кредита клиентам банка". Другими словами, первый вариант использования является специализацией второго варианта использования. При этом вариант использования "Предоставление кредита клиентам банка" еще называют предком или родителем по отношению к варианту использования "Предоставление кредита корпоративным клиентам", а последний вариант называют потомком по отношению к первому варианту использования. Следует подчеркнуть, что потомок наследует все свойства поведения своего родителя, а также может обладать дополнительными особенностями поведения.

Отношение обобщения между вариантами использования применяется в том случае, когда необходимо отметить, что дочерние варианты использования обладают всеми особенностями поведения родительских вариантов. При этом дочерние варианты использования участвуют во всех отношениях родительских вариантов. В свою очередь, дочерние варианты могут наделяться новыми свойствами поведения, которые отсутствуют у родительских вариантов использования, а также уточнять или модифицировать наследуемые от них свойства поведения.


Формализация функциональных требований к системе с помощью диаграммы вариантов использования


Отдельные варианты использования могут применяться как для спецификации требований к проектируемой системе, так и для документирования процесса поведения имеющейся системы. Кроме этого, варианты использования неявно специфицируют требования, определяющие особенности взаимодействия пользователей с системой, которые специфицируют возможность корректной работы с предоставляемыми данной системой сервисами.

Требование (requirement) - желательное свойство, характеристика или условие, которым должна удовлетворять система в процессе своей эксплуатации.

Применительно к программным системам предложена следующая классификация требований, которая получила название модели FURPS+, что соответствует первым буквам соответствующих категорий требований на английском языке:

функциональные требования (Functionality)требования удобства использования (Usability)требования надежности (Reliability)требования производительности (Performance)требования возможности сопровождения (Supportability)

При этом символом "+" обозначены дополнительные условия, к которым относятся:

проектные ограничениятребования управления системойтребования к графическому интерфейсу пользователяфизические требованияюридические требования

Центральное место среди указанных требований занимают функциональные, которые специфицируют особенности реализации отдельных бизнес-процессов моделируемой системы. В контексте моделей языка UML именно функциональные требования должны служить исходной информацией для построения диаграмм вариантов использования. Однако графических средств языка UML на практике оказывается недостаточно для спецификации функциональных требований.

Следует отметить, что одним из требований языка UML является самодостаточность диаграмм для представления информации о моделях проектируемых систем. Однако большинство разработчиков и экспертов согласны с тем, что изобразительных средств языка UML явно не хватает для того, чтобы учесть на диаграммах вариантов использования особенности функционального поведения сложной системы.
С этой целью рекомендуется дополнять этот тип диаграмм текстовыми сценариями, которые уточняют или детализируют последовательность действий, совершаемых системой при выполнении ее вариантов использования.

Сценарий (scenario) - определенная последовательность действий, которая описывает действия актеров и поведение моделируемой системы в форме обычного текста.

В контексте языка UML сценарий используется для дополнительной иллюстрации взаимодействия актеров и вариантов использования. Предлагаются различные способы представления или написания подобных сценариев. Один из таких шаблонов рассматривается ниже и может быть рекомендован читателям для применения на начальных этапах концептуального моделирования (табл. 4.1).

Таблица 4.1. Шаблон для написания сценария отдельного варианта использованияГлавный разделРаздел "Типичный ход событий"Раздел "Исключения"Раздел "Примечания"
Имя варианта использованияТипичный ход событий, приводящий к успешному выполнению варианта использованияИсключение № 1Примечания № 1
АктерыИсключение № 2Примечания № 2
Цель......
Краткое описание
Тип
Ссылки на другие варианты использованияИсключение № NПримечания № N
При написании сценариев вариантов использования важно понимать, что текст сценария должен дополнять или уточнять диаграмму вариантов использования, но не заменять ее полностью. В противном случае будут потеряны достоинства визуального представления моделей.

Построение диаграммы вариантов использования - самый первый этап процесса объектно-ориентированного анализа и проектирования, цель которого - представить совокупность функциональных требований к поведению проектируемой системы. Спецификация требований к проектируемой системе в форме диаграммы вариантов использования и дополнительных сценариев может представлять собой самостоятельную модель, которая в языке UML получила название модели вариантов использования и имеет свое специальное стандартное имя или стереотип <<useCaseModel>>.

Все заданные в этой модели требования допустимо представить в виде общей модели системы, которая может быть оформлена как отдельный пакет Система.Этот пакет в свою очередь может представлять собой иерархию пакетов, на самом верхнем уровне которых содержится множество классов, реализующих базовые варианты использования проектируемой системы. При этом пакет системы самого верхнего уровня может быть дополнительно помечен стереотипом <<topLevelPackage>>.


Особенности спецификации функциональных требований на диаграмме вариантов использования


Для иллюстрации особенностей спецификации функциональных требований на диаграмме вариантов использования можно рассмотреть модель обычного банкомата. Процесс функционирования этой системы хорошо знаком владельцам кредитных карточек, поэтому не требует дополнительного описания. Особенность отечественных банкоматов состоит в том, что в них отсутствует возможность перевода средств с одного счета на другой. Рассматриваемая система имеет двух актеров, один из которых является клиентом банкомата, а другой - Банком, который осуществляет выполнение соответствующих транзакций. Каждый из этих актеров взаимодействует с банкоматом, хотя главный актер Клиент, поскольку именно он инициирует функциональность банкомата.

Основные функциональные требования к банкомату заключаются в предоставлении клиенту возможности снятия наличных по кредитной карточке и получении справки о состоянии счета. Именно эти функциональные требования специфицируются отдельными вариантами использования, которые служат ключевыми элементами соответствующей концептуальной модели. Поскольку для выполнения этих вариантов использования необходимо аутентифицировать кредитную карточку, они оба обращаются к дополнительному сервису "Проверка ПИН-кода кредитной карточки". Как следует из существа выдвигаемых к банкомату функциональных требований, этот сервис может выступать в качестве отдельного варианта использования разрабатываемой диаграммы и соединяться с первыми двумя вариантами отношением включения. Соответствующая диаграмма вариантов использования может включать в себя только указанных двух актеров и три варианта использования (рис. 4.1).


Рис. 4.1.  Диаграмма вариантов использования для модели банкомата

На следующем этапе разработки модели вариантов использования для рассматриваемой системы банкомата следует дополнить данную диаграмму текстовым сценарием, написанным на основе предложенного ранее шаблона (табл. 4.1). Этот сценарий будет дополнять диаграмму, раскрывая содержание и логическую последовательность отдельных действий , которые выполняются системой и актерами в процессе снятия наличных по кредитной карточке.
В этом случае сценарий удобно представить в виде трех таблиц, каждая из которых описывает отдельный раздел шаблона.

В главном разделе сценария (табл. 4.2) указывается имя рассматриваемого варианта использования, имена взаимосвязанных с ним актеров, цель выполнения варианта, условный тип и ссылки на другие варианты использования.

Таблица 4.2. Главный раздел сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Вариант использованияАктерыКраткое описаниеЦельТипСсылки на другие варианты использования
Снятие наличных по кредитной карточке
Клиент, Банк
Получение требуемой суммы наличными
Клиент запрашивает требуемую сумму. Банкомат обеспечивает доступ к счету клиента. Банкомат выдает клиенту наличные.
Базовый
Включает в себя ВИ: Проверка ПИН-кода кредитной карточкиИдентифицировать кредитную карточку

В следующем разделе сценария (табл. 4.3) описывается последовательность действий, приводящая к успешному выполнению рассматриваемого варианта использования. При этом инициатором действий должен выступать актер Клиент. Для удобства последующих ссылок каждое действие помечается порядковым номером в последовательности.

Таблица 4.3. Раздел Типичный ход событий сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Действия актеровОтклик системы


1. Клиент вставляет кредитную карточку в устройство чтения банкомата

Исключение №1: Кредитная карточка недействительна



2. Банкомат проверяет кредитную карточку

3. Банкомат предлагает ввести ПИН-код



4. Клиент вводит персональный PIN-код

Исключение №2: Клиент вводит неверный ПИН-код



5. Банкомат проверяет ПИН-код

6. Банкомат отображает опции меню



7. Клиент выбирает снятие наличных со своего счета



8. Система делает запрос в Банк и выясняет текущее состояние счета клиента

9. Банкомат предлагает ввести требуемую сумму



10. Клиент вводит требуемую сумму

11. Банк проверяет введенную сумму

Исключение №3: Требуемая сумма превышает сумму на счете клиента



12. Банкомат изменяет состояние счета клиента, выдает наличные и чек



13. Клиент получает наличные и чек



14. Банкомат предлагает клиенту забрать кредитную карточку



15. Клиент получает свою кредитную карточку



16. Банкомат отображает сообщение о готовности к работе

<


В третьем разделе сценария (табл. 4.4) описывается последовательность действий, выполняемых при возникновении исключительных ситуаций или исключений.

Таблица 4.4. Раздел Исключения сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Действия актераОтклик системы
Исключение №1. Кредитная карточка недействительна или неверно вставлена




3. Банкомат отображает информацию о неверно вставленной кредитной карточке

14. Банкомат возвращает клиенту его кредитную карточку



15. Клиент получает свою кредитную карточку





Исключение №2. Клиент вводит неверный ПИН-код





6. Банкомат отображает информацию о неверном ПИН-коде



4. Клиент вводит новый ПИН-код





Исключение №3. Требуемая сумма превышает сумму на счете клиента





12. Банкомат отображает информацию о превышении кредита



10. Клиент вводит новую требуемую сумму



Можно дополнить данный сценарий, аналогичным образом описав не только варианты использования "Получение справки о состоянии счета" и "Проверка Пин-кода кредитной карточки", но и рассмотрев другие исключения, например отказ клиента от получения наличных после проверки ПИН-кода и т.п. При этом полнота сценариев и модели вариантов использования будут определяться теми функциональными требованиями, которые сформулированы в рамках конкретного проекта разработки соответствующего банкомата.

Отдельные небольшие по своему объему сценарии могут быть размещены на диаграмме в форме примечаний.

Примечание (note) предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.

В качестве такой информации могут быть комментарии разработчика (например, дата и версия разработки диаграммы или ее отдельных компонентов), ограничения (например, на значения отдельных связей или экземпляры сущностей) и помеченные значения. Применительно к диаграммам вариантов использования примечание может иметь уточняющую информацию, относящуюся к контексту тех или иных вариантов использования.



Графически примечания на всех типах диаграмм обозначаются прямоугольником с "загнутым" верхним правым уголком (рис. 4.2). Собственно текст примечания размещается внутри этого прямоугольника. Примечание может относиться к любому элементу диаграммы, в этом случае их соединяет пунктирная линия. Если примечание относится к нескольким элементам, то от него проводятся соответственно, несколько линий. Как уже отмечалось, примечания могут присутствовать не только на диаграмме вариантов использования, но и на других канонических диаграммах.


Рис. 4.2.  Примеры примечаний на диаграммах вариантов использования

Если в примечании указывается ключевое слово <<constraint>>, то данное примечание является ограничением, налагаемым на соответствующий элемент модели, но не на саму диаграмму. При этом запись ограничения заключается в фигурные скобки и должна соответствовать правилам построения выражений языка OCL. Однако для диаграмм вариантов использования ограничения включать в модели не рекомендуется, поскольку они достаточно жестко регламентируют физические аспекты реализации системы, что противоречит концептуальному характеру общей модели вариантов использования.



В этом случае сценарий удобно представить в виде трех таблиц, каждая из которых описывает отдельный раздел шаблона.

В главном разделе сценария (табл. 4.2) указывается имя рассматриваемого варианта использования, имена взаимосвязанных с ним актеров, цель выполнения варианта, условный тип и ссылки на другие варианты использования.

Таблица 4.2. Главный раздел сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Вариант использованияАктерыКраткое описаниеЦельТипСсылки на другие варианты использования
Снятие наличных по кредитной карточке
Клиент, Банк
Получение требуемой суммы наличными
Клиент запрашивает требуемую сумму. Банкомат обеспечивает доступ к счету клиента. Банкомат выдает клиенту наличные.
Базовый
Включает в себя ВИ: Проверка ПИН-кода кредитной карточкиИдентифицировать кредитную карточку

В следующем разделе сценария (табл. 4.3) описывается последовательность действий, приводящая к успешному выполнению рассматриваемого варианта использования. При этом инициатором действий должен выступать актер Клиент. Для удобства последующих ссылок каждое действие помечается порядковым номером в последовательности.

Таблица 4.3. Раздел Типичный ход событий сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Действия актеровОтклик системы


1. Клиент вставляет кредитную карточку в устройство чтения банкомата

Исключение №1: Кредитная карточка недействительна



2. Банкомат проверяет кредитную карточку

3. Банкомат предлагает ввести ПИН-код



4. Клиент вводит персональный PIN-код

Исключение №2: Клиент вводит неверный ПИН-код



5. Банкомат проверяет ПИН-код

6. Банкомат отображает опции меню



7. Клиент выбирает снятие наличных со своего счета



8. Система делает запрос в Банк и выясняет текущее состояние счета клиента

9. Банкомат предлагает ввести требуемую сумму



10. Клиент вводит требуемую сумму

11. Банк проверяет введенную сумму

Исключение №3: Требуемая сумма превышает сумму на счете клиента



12. Банкомат изменяет состояние счета клиента, выдает наличные и чек



13. Клиент получает наличные и чек



14. Банкомат предлагает клиенту забрать кредитную карточку



15. Клиент получает свою кредитную карточку



16. Банкомат отображает сообщение о готовности к работе

<


В третьем разделе сценария (табл. 4.4) описывается последовательность действий, выполняемых при возникновении исключительных ситуаций или исключений.

Таблица 4.4. Раздел Исключения сценария выполнения варианта использования "Снятие наличных по кредитной карточке"Действия актераОтклик системы
Исключение №1. Кредитная карточка недействительна или неверно вставлена




3. Банкомат отображает информацию о неверно вставленной кредитной карточке

14. Банкомат возвращает клиенту его кредитную карточку



15. Клиент получает свою кредитную карточку





Исключение №2. Клиент вводит неверный ПИН-код





6. Банкомат отображает информацию о неверном ПИН-коде



4. Клиент вводит новый ПИН-код





Исключение №3. Требуемая сумма превышает сумму на счете клиента





12. Банкомат отображает информацию о превышении кредита



10. Клиент вводит новую требуемую сумму



Можно дополнить данный сценарий, аналогичным образом описав не только варианты использования "Получение справки о состоянии счета" и "Проверка Пин-кода кредитной карточки", но и рассмотрев другие исключения, например отказ клиента от получения наличных после проверки ПИН-кода и т.п. При этом полнота сценариев и модели вариантов использования будут определяться теми функциональными требованиями, которые сформулированы в рамках конкретного проекта разработки соответствующего банкомата.

Отдельные небольшие по своему объему сценарии могут быть размещены на диаграмме в форме примечаний.

Примечание (note) предназначено для включения в модель произвольной текстовой информации, имеющей непосредственное отношение к контексту разрабатываемого проекта.

В качестве такой информации могут быть комментарии разработчика (например, дата и версия разработки диаграммы или ее отдельных компонентов), ограничения (например, на значения отдельных связей или экземпляры сущностей) и помеченные значения. Применительно к диаграммам вариантов использования примечание может иметь уточняющую информацию, относящуюся к контексту тех или иных вариантов использования.



Графически примечания на всех типах диаграмм обозначаются прямоугольником с "загнутым" верхним правым уголком (рис. 4.2). Собственно текст примечания размещается внутри этого прямоугольника. Примечание может относиться к любому элементу диаграммы, в этом случае их соединяет пунктирная линия. Если примечание относится к нескольким элементам, то от него проводятся соответственно, несколько линий. Как уже отмечалось, примечания могут присутствовать не только на диаграмме вариантов использования, но и на других канонических диаграммах.


Рис. 4.2.  Примеры примечаний на диаграммах вариантов использования

Если в примечании указывается ключевое слово <<constraint>>, то данное примечание является ограничением, налагаемым на соответствующий элемент модели, но не на саму диаграмму. При этом запись ограничения заключается в фигурные скобки и должна соответствовать правилам построения выражений языка OCL. Однако для диаграмм вариантов использования ограничения включать в модели не рекомендуется, поскольку они достаточно жестко регламентируют физические аспекты реализации системы, что противоречит концептуальному характеру общей модели вариантов использования.


Рекомендации по разработке диаграмм вариантов использования


Как было отмечено ранее, одно из главных назначений диаграммы вариантов использования заключается в формализации функциональных требований к системе. Диаграмма вариантов использования может служить основой для согласования с заказчиком функциональных требований к системе на ранней стадии проектирования. Любой из базовых вариантов использования в последующем может быть подвергнут декомпозиции на частные варианты использования. При этом рекомендуется, чтобы общее количество актеров в модели не превышало 20, а вариантов использования -50. В противном случае модель теряет свою наглядность и, возможно, заменяет собой одну из некоторых других диаграмм.

Для разработки диаграммы вариантов использования рекомендуется некоторая последовательность действий:

Определить главных или первичных и второстепенных актеровОпределить цели главных актеров по отношению к системеСформулировать основные варианты использования, которые специфицируют функциональные требования к системеУпорядочить варианты использования по степени убывания риска их реализацииРассмотреть все базовые варианты использования в порядке убывания их степени рискаВыделить участников, интересы, предусловия и постусловия выполнения выбранного варианта использованияНаписать успешный сценарий реализации выбранного варианта использованияОпределить исключения или неуспех в выполнении сценария варианта использованияНаписать сценарии для всех исключенийВыделить общие варианты использования и изобразить их взаимосвязи с базовыми со стереотипом <<include>>Выделить варианты использования для исключений и изобразить их взаимосвязи с базовыми со стереотипом <<extend>>Проверить диаграмму на отсутствие дублирования вариантов использования и актеров

Семантика построения диаграммы вариантов использования должна определяться следующими особенностями рассмотренных выше элементов модели. Отдельный экземпляр варианта использования по своему содержанию является выполнением последовательности действий, которая инициализируется посредством экземпляра сообщения от экземпляра актера.
В качестве отклика или ответной реакции на сообщение актера выполняется последовательность действий, установленная для данного варианта использования. При этом актеры могут генерировать новые сообщения для инициирования вариантов использования.

Подобное взаимодействие будет продолжаться до тех пор, пока не закончится выполнение требуемой последовательности действий экземпляром варианта использования, и указанный в модели экземпляр актера не получит требуемый экземпляр сервиса. Окончание взаимодействия означает отсутствие инициализации сообщений от актеров для базовых вариантов использования.

Варианты использования могут быть дополнительно специфицированы примечаниями с текстом, которые в последующем могут стать прототипами операций и методов совместно с атрибутами. Дальнейшая разработка моделей связана с реализацией вариантов использования в виде графа деятельности, посредством конечного автомата или любого другого механизма логического представления поведения, включающего предусловия и постусловия. Взаимодействие между вариантами использования и актерами может уточняться на диаграмме кооперации, когда описываются взаимосвязи между системой, содержащей эти варианты использования, и окружением или внешней средой этой системы.

В случае, когда для представления иерархической структуры проектируемой системы применяются подсистемы, система может быть определена в виде вариантов использования на всех уровнях. Отдельные подсистемы или классы могут реализовывать собственные варианты использования. При этом наиболее общий или абстрактный вариант использования в последующем может уточняться множеством частных вариантов использования, каждый из которых будет определять сервис элемента модели, содержащийся в сервисе исходной системы. В этом контексте общий вариант использования может рассматриваться как суперсервис для уточняющих его вариантов использования, которые, в свою очередь, могут рассматриваться как подсервисы исходного варианта использования.

Отдельные варианты использования нижнего уровня могут участвовать в нескольких кооперациях, т.


е. играть определенную роль при выполнении сервисов нескольких вариантов верхнего уровня. Для отдельных таких коопераций могут быть определены соответствующие роли актеров, взаимодействующих с конкретными вариантами использования нижнего уровня. Эти роли будут играть актеры нижнего уровня модели системы. Некоторые из таких актеров могут быть актерами верхнего уровня, но это не противоречит принятым в языке UML семантическим правилам построения диаграмм вариантов использования.

Однако следует заметить, что структура элемента-контейнера не может быть представлена вариантами использования, поскольку они могут представлять только функциональность отдельных элементов модели. Подчиненные варианты использования могут только кооперироваться для совместного выполнения суперсервиса варианта использования верхнего уровня. Эта кооперация также представляется на диаграмме кооперации в виде совместных действий отдельных элементов модели.

Окружение вариантов использования нижнего уровня - самостоятельный элемент модели, который, в свою очередь, может содержать другие элементы модели, определенные для этих вариантов использования. Таким образом, с точки зрения общего представления концептуальной модели взаимодействие между вариантами использования нижнего уровня определяет результат выполнения сервиса варианта верхнего уровня.

Реализация варианта использования зависит от типа элемента модели, в котором он определен. Например, варианты использования моделируемой программной системы могут быть реализованы посредством операций классов модели. Применительно к бизнес-системам варианты использования могут реализоваться сотрудниками этой системы. Во всех случаях элементы системы должны взаимодействовать друг с другом для совместного обеспечения требуемого поведения и выполнения вариантов использования модели.

Если в качестве моделируемой сущности выступает подсистема нижнего уровня, то отдельные пользователи вариантов использования этой подсистемы моделируются актерами. Такие актеры, в свою очередь, могут являться внутренними сотрудниками по отношению к моделируемым системам верхних уровней, что зачастую в явном виде не указываются на диаграммах.Эти элементы модели могут содержаться в других пакетах или подсистемах. В последнем случае роли актеров определяются в том пакете, к которому относится соответствующая подсистема.

Если варианты использования применяются для спецификации части системы, то они будут эквивалентны соответствующим вариантам использования в модели подсистемы соответствующего пакета. При этом важно понимать, что все функциональные требования к системе должны быть явно специфицированы на диаграмме вариантов использования, и никаких других сервисов, которые отсутствуют на данной диаграмме, проектируемая система не может выполнять по определению. Более того, если для моделирования поведения системы используются сразу несколько моделей, то множество вариантов использования всех пакетов системы должно быть эквивалентно множеству вариантов использования модели в целом.



© 2003-2007 INTUIT.ru. Все права защищены.

Атрибуты класса


Атрибут (attribute) — содержательная характеристика класса, описывающая множество значений, которые могут принимать отдельные объекты этого класса.

Атрибут класса служит для представления отдельного свойства или признака, который является общим для всех объектов данного класса. Атрибуты класса записываются во второй сверху секции прямоугольника класса. Эту секцию часто называют секцией атрибутов.

В языке UML принята определенная стандартизация записи атрибутов класса, которая подчиняется некоторым синтаксическим правилам. Каждому атрибуту класса соответствует отдельная строка текста, которая состоит из квантора видимости атрибута, имени атрибута, его кратности, типа значений атрибута и, возможно, его исходного значения. Общий формат записи отдельного атрибута класса следующий:

<квантор видимости> <имя атрибута> [кратность] : <тип атрибута> = <исходное значение> {строка-свойство}.

Видимость (visibility) — качественная характеристика описания элементов класса, характеризующая потенциальную возможность других объектов модели оказывать влияние на отдельные аспекты поведения данного класса.

Видимость в языке UML специфицируется с помощью квантора видимости (visibility), который может принимать одно из 4-х возможных значений и отображаться при помощи специальных символов.

Символ "+" – обозначает атрибут с областью видимости типа общедоступный (public). Атрибут с этой областью видимости доступен или виден из любого другого класса пакета, в котором определена диаграмма.Символ "#" – обозначает атрибут с областью видимости типа защищенный (protected). Атрибут с этой областью видимости недоступен или невиден для всех классов, за исключением подклассов данного класса.Символ "-" – обозначает атрибут с областью видимости типа закрытый (private). Атрибут с этой областью видимости недоступен или невиден для всех классов без исключения.И, наконец, символ "~" - обозначает атрибут с областью видимости типа пакетный (package).
Атрибут с этой областью видимости недоступен или невиден для всех классов за пределами пакета, в котором определен класс-владелец данного атрибута.

Квантор видимости может быть опущен. Его отсутствие означает, что видимость атрибута не указывается. Эта ситуация отличается от принятых по умолчанию соглашений в традиционных языках программирования, когда отсутствие квантора видимости трактуется как public или private. Однако вместо условных графических обозначений можно записывать соответствующее ключевое слово: public, protected, private, package.

Имя атрибута представляет собой строку текста, которая используется в качестве идентификатора соответствующего атрибута и поэтому должна быть уникальной в пределах данного класса. Имя атрибута - единственный обязательный элемент синтаксического обозначения атрибута, должно начинаться со строчной (малой) буквы и не должно содержать пробелов.

Кратность (multiplicity) — спецификация области значений допустимой мощности, которой могут обладать соответствующие множества.

Кратность атрибута характеризует общее количество конкретных атрибутов данного типа, входящих в состав отдельного класса. В общем случае кратность записывается в форме строки текста из цифр в квадратных скобках после имени соответствующего атрибута, при этом цифры разделяются двумя точками: [нижняя граница .. верхняя граница], где нижняя и верхняя границы положительные целые числа. Каждая такая пара служит для обозначения отдельного замкнутого интервала целых чисел, у которого нижняя (верхняя) граница равна значению нижняя граница (верхняя). В качестве верхней границы может использоваться специальный символ "*" (звездочка), который означает произвольное положительное целое число, т.е. неограниченное сверху значение кратности соответствующего атрибута.

Интервалов кратности для отдельного атрибута может быть несколько. В этом случае их совместное использование соответствует теоретико-множественному объединению соответствующих интервалов. Значения кратности из интервала следуют в монотонно возрастающем порядке без пропуска отдельных чисел, лежащих между нижней и верхней границами.


При этом придерживаются следующего правила: соответствующие нижние и верхние границы интервалов включаются в значение кратности.

Если в качестве кратности указывается единственное число, то кратность атрибута принимается равной данному числу. Если же указывается единственный знак "*", то это означает, что кратность атрибута может быть произвольным положительным целым числом или нулем. В языке UML кратность широко используется также для задания ролей ассоциаций, составных объектов и значений атрибутов. Если кратность атрибута не указана, то по умолчанию в языке UML принимается ее значение равное [1..1], т. е. в точности 1.

Тип атрибута представляет собой выражение, семантика которого определяется некоторым типом данных, определенным в пакете Типы данных языка UML или самим разработчиком. В нотации UML тип атрибута иногда определяется в зависимости от языка программирования, который предполагается использовать для реализации данной модели. В простейшем случае тип атрибута указывается строкой текста, имеющей осмысленное значение в пределах пакета или модели, к которым относится рассматриваемый класс.

Исходное значение служит для задания начального значения соответствующего атрибута в момент создания отдельного экземпляра класса. Здесь необходимо придерживаться правила принадлежности значения типу конкретного атрибута. Если исходное значение не указано, то значение соответствующего атрибута не определено на момент создания нового экземпляра класса. С другой стороны, конструктор объекта может переопределять исходное значение в процессе выполнения программы, если в этом возникает необходимость.

При задании атрибутов могут быть использованы дополнительные синтаксические конструкции — это подчеркивание строки атрибута, пояснительный текст в фигурных скобках и косая черта перед именем атрибута. Подчеркивание строки атрибута означает, что соответствующий атрибут общий для всех объектов данного класса, т.е. его значение у всех создаваемых объектов одинаковое (аналог ключевого слова static в некоторых языках программирования).



Пояснительный текст в фигурных скобках может означать две различные конструкции. Если в этой строке имеется знак равенства, то вся запись Строка-свойство служит для указания дополнительных свойств атрибута, которые могут характеризовать особенности изменения значений атрибута в ходе выполнения программы. Фигурные скобки как раз и обозначают фиксированное значение соответствующего атрибута для класса в целом, которое должны принимать все вновь создаваемые экземпляры класса без исключения. Это значение принимается за исходное значение атрибута, которое не может быть переопределено в последующем. Отсутствие строки-свойства по умолчанию трактуется так, что значение соответствующего атрибута может быть изменено в программе.

Знак "/" перед именем атрибута указывает на то, что данный атрибут является производным от некоторого другого атрибута этого же класса.

Производный атрибут (derived element) — атрибут класса, значение которого для отдельных объектов может быть вычислено посредством значений других атрибутов этого же объекта.


Имя класса


Имя класса должно быть уникальным в пределах пакета, который может содержать одну или несколько диаграмм классов. Имя указывается в самой верхней секции прямоугольника, поэтому она часто называется секцией имени класса. В дополнение к общему правилу именования элементов языка UML, имя класса записывается по центру секции имени полужирным шрифтом и должно начинаться с заглавной буквы. Рекомендуется в качестве имен классов использовать существительные, записанные по практическим соображениям без пробелов. Необходимо помнить, что имена классов образуют словарь предметной области при ООАП.

В секции имени класса могут также находиться стереотипы или ссылки на стандартные шаблоны, от которых образован данный класс и, соответственно, от которых он наследует атрибуты и операции. В этой секции может также приводиться информация о разработчике данного класса и статус состояния разработки. Здесь также могут записываться и другие общие свойства этого класса, имеющие отношение к другим классам диаграммы или стандартным элементам языка UML.

Класс может иметь или не иметь экземпляров или объектов. В зависимости от этого в языке UML различают конкретные и абстрактные классы.

Конкретный класс (concrete class) — класс, на основе которого могут быть непосредственно созданы экземпляры или объекты.

Рассмотренные выше обозначения относятся к конкретным классам. От них следует отличать абстрактные классы.

Абстрактный класс (abstract class) — класс, который не имеет экземпляров или объектов.

Для обозначения имени абстрактного класса используется наклонный шрифт (курсив). В языке UML принято общее соглашение о том, что любой текст, относящийся к абстрактному элементу, записывается курсивом. Это имеет принципиальное значение, поскольку является семантическим аспектом описания абстрактных элементов языка UML.

В некоторых случаях необходимо явно указать, к какому пакету относится тот или иной класс. Для этой цели используется специальный символ разделитель – двойное двоеточие - (::). Синтаксис строки имени класса в этом случае будет следующий: <Имя пакета>::<Имя класса>. Другими словами, перед именем класса должно быть явно указано имя пакета, к которому его следует отнести. Например, если определен пакет с именем Банк, то класс Счет в этом банке может быть записан в виде: Банк::Счет.



Интерфейс


Интерфейс (interface) — именованное множество операций, которые характеризуют поведение отдельного элемента модели.

Интерфейс в контексте языка UML является специальным случаем класса, у которого имеются операции, но отсутствуют атрибуты. Для обозначения интерфейса используется специальный графический символ окружность или стандартный способ – прямоугольник класса со стереотипом <<interface>> (рис. 5.5).

На диаграмме вариантов использования интерфейс изображается в виде маленького круга, рядом с которым записывается его имя (рис. 5.5, а). В качестве имени может использоваться существительное, которое характеризует соответствующую информацию или сервис, например, "Датчик температуры", "Форма ввода", "Сирена", "Видеокамера" (рис. 5.5, б). С учетом языка реализации модели имя интерфейса, как и имена других классов, рекомендуется записывать на английском и начинать с заглавной буквы I, например, ITemperatureSensor, IsecureInformation (рис. 5.5, в).


Рис. 5.5.  Примеры графического изображения интерфейсов на диаграммах классов

Интерфейсы на диаграмме служат для спецификации таких элементов модели, которые видимы извне, но их внутренняя структура остается скрытой от клиентов. Интерфейсы не могут содержать ни атрибутов, ни состояний, ни направленных ассоциаций. Они содержат только операции без указания особенностей их реализации. Формально интерфейс не только отделяет спецификацию операций системы от их реализации, но и определяет общие границы проектируемой системы. В последующем интерфейс может быть уточнен явным указанием тех операций, которые специфицируют отдельный аспект поведения системы. Графическое изображение интерфейсов в форме окружности могут использоваться и на других типах канонических диаграмм, например, диаграммах компонентов и развертывания.



Класс


Класс (class) — абстрактное описание множества однородных объектов, имеющих одинаковые атрибуты, операции и отношения с объектами других классов.

Графически класс в нотации языка UML изображается в виде прямоугольника, который дополнительно может быть разделен горизонтальными линиями на разделы или секции (рис. 5.1). В этих секциях могут указываться имя класса, атрибуты и операции класса.


Рис. 5.1.  Варианты графического изображения класса на диаграмме классов

На начальных этапах разработки диаграммы отдельные классы могут обозначаться простым прямоугольником, в котором должно быть указано имя соответствующего класса (рис. 5.1, а). По мере проработки отдельных компонентов диаграммы описание классов дополняется атрибутами (рис. 5.1, б) и операциями (рис. 5.1, в). Четвертая секция (рис. 5.1, г) не обязательна и служит для размещения дополнительной информации справочного характера, например, об исключениях или ограничениях класса, сведения о разработчике или языке реализации. Предполагается, что окончательный вариант диаграммы содержит наиболее полное описание классов, которые состоят из трех или четырех секций.

Даже если секции атрибутов и операций пусты, в обозначении класса они должны быть выделены горизонтальной линией, с тем чтобы отличить класс от других элементов языка UML. Примеры графического изображения конкретных классов приведены на рис. 5.2. В первом случае для класса Окружность (рис. 5.2, а) указаны только его атрибуты – точка на координатной плоскости, которая определяет расположение ее центра. Для класса Окно (рис. 5.2, б) указаны только его операции, при этом секция его атрибутов оставлена пустой. Для класса Счет (рис. 5.2, в) дополнительно изображена четвертая секция, в которой указано требование – реализовать резервное копирование объектов этого класса.


Рис. 5.2.  Примеры графического изображения конкретных классов



Операции класса


Операция (operation) - это сервис, предоставляемый каждым экземпляром или объектом класса по требованию своих клиентов, в качестве которых могут выступать другие объекты, в том числе и экземпляры данного класса.

Операции класса записываются в третьей сверху секции прямоугольника класса, которую часто называют секцией операций. Совокупность операций характеризует функциональный аспект поведения всех объектов данного класса. Запись операций класса в языке UML также стандартизована и подчиняется определенным синтаксическим правилам. При этом каждой операции класса соответствует отдельная строка, которая состоит из квантора видимости операции, имени операции, выражения типа возвращаемого операцией значения и, возможно, строка-свойство данной операции. Общий формат записи отдельной операции класса следующий:

<квантор видимости> <имя операции>( список параметров): <выражение типа возвращаемого значения> {строка-свойство}

Квантор видимости, как и в случае атрибутов класса, может принимать одно из четырех возможных значений и, соответственно, отображается при помощи специального символа либо ключевого слова. Символ "+" обозначает операцию с областью видимости типа общедоступный (public). Символ "#" обозначает операцию с областью видимости типа защищенный (protected). Символ "-" используется для обозначения операции с областью видимости типа закрытый (private). И, наконец, символ "~" используется для обозначения операции с областью видимости типа пакетный (package).

Квантор видимости для операции может быть опущен. В этом случае его отсутствие просто означает, что видимость операции не указывается. Вместо условных графических обозначений также можно записывать соответствующее ключевое слово: public, protected, private, package.

Имя операции представляет собой строку текста, которая используется в качестве идентификатора соответствующей операции и поэтому должна быть уникальной в пределах данного класса. Имя операции - единственный обязательный элемент синтаксического обозначения операции, должно начинаться со строчной (малой) буквы, и, как правило, записываться без пробелов.


Список параметров является перечнем разделенных запятой формальных параметров, каждый из которых, в свою очередь, может быть представлен в следующем виде:

<направление параметра> <имя параметра>: <выражение типа> = <значение параметра по умолчанию>.

Параметр (parameter) — спецификация переменной операции, которая может быть изменена, передана или возвращена.

Параметр может включать имя, тип, направление и значение по умолчанию. Направление параметра — есть одно из ключевых слов in, out или inout со значением in по умолчанию, в случае если вид параметра не указывается. Имя параметра есть идентификатор соответствующего формального параметра, при записи которого следуют правилам задания имен атрибутов. Выражение типа является спецификацией типа данных для допустимых значений соответствующего формального параметра. Наконец, значение по умолчанию в общем случае представляет собой некоторое конкретное значение для этого формального параметра.

Выражение типа возвращаемого значения также указывает на тип данных значения, которое возвращается объектом после выполнения соответствующей операции. Две точки и выражение типа возвращаемого значения могут быть опущены, если операция не возвращает никакого значения. Для указания нескольких возвращаемых значений данный элемент спецификации операции может быть записан в виде списка отдельных выражений.

Операция с областью действия на весь класс показывается подчеркиванием имени и строки выражения типа. В этом случае под областью действия операции понимаются все объекты этого класса. В этом случае вся строка записи операции подчеркивается.

Строка-свойство служит для указания значений свойств, которые могут быть применены к данной операции. Строка-свойство может отсутствовать, если свойства не специфицированы.

Список формальных параметров и тип возвращаемого значения не обязателен. Квантор видимости атрибутов и операций может быть указан в виде специального значка или символа, которые используются для графического представления моделей в инструментальном средстве.Еще раз следует напомнить, что имена операций, так же как атрибутов и параметров, записываются со строчной (малой) буквы, а их типы параметров — с заглавной (большой) буквы. При этом обязательной частью строки записи операции является наличие имени операции и круглых скобок.


Расширение языка UML для построения моделей программного обеспечения и бизнес-систем


Одним из несомненных достоинств языка UML является наличие механизмов расширения, которые позволяют ввести в рассмотрение дополнительные графические обозначения, ориентированные для решения задач из определенной предметной области. Язык UML содержит два специальных расширения: профиль для процесса разработки программного обеспечения (The UML Profile for Software Development Processes) и профиль для бизнес-моделирования (The UML Profile for Business Modeling).

В рамках первого из них предложено три специальных графических примитива, которые могут быть использованы для уточнения семантики отдельных классов при построении различных диаграмм:

Управляющий класс (control class) — класс, отвечающий за координацию действий других классов. На каждой диаграмме классов должен быть хотя бы один управляющий класс, причем количество посылаемых объектам управляющего класса сообщений мало, по сравнению с числом рассылаемых ими. Управляющий класс отвечает за координацию действий других классов. У каждой диаграммы классов должен быть хотя бы один управляющий класс, контролирующий последовательность выполнения действий этого варианта использования. Как правило, данный класс является активным и инициирует рассылку множества сообщений другим классам модели. Кроме специального обозначения управляющий класс может быть изображен в форме прямоугольника класса со стереотипом <<control>> (рис. 5.3, а).

Класс-сущность (entity class) — пассивный класс, информация о котором должна храниться постоянно и не уничтожаться с выключением системы. Класс-сущность содержит информацию, которая должна храниться постоянно и не уничтожается с уничтожением объектов данного класса или прекращением работы моделируемой системы, связанные с выключением системы или завершением программы. Как правило, этот класс соответствует отдельной таблице базы данных. В этом случае его атрибуты являются полями таблицы, а операции – присоединенными или хранимыми процедурами. Этот класс пассивный и лишь принимает сообщения от других классов модели.
Класс- сущность может быть изображен также стандартным образом в форме прямоугольника класса со стереотипом <<entity>> (рис. 5.3, б).Граничный класс (boundary class) — класс, который располагается на границе системы с внешней средой и непосредственно взаимодействует с актерами, но является составной частью системы. Граничный класс может быть изображен также стандартным образом в форме прямоугольника класса со стереотипом <<boundary>> (рис. 5.3, в).


Рис. 5.3.  Графическое изображение классов для моделирования программного обеспечения

В рамках второго профиля также предложено три специальных графических примитива, которые могут быть использованы для уточнения семантики отдельных классов при построении моделей бизнес-систем:

Сотрудник (business worker) — класс, служащий на диаграмме классов для представления любого сотрудника, который является элементом бизнес-системы и взаимодействует с другими сотрудниками при реализации бизнес-процесса. Этот класс также может быть изображен в форме прямоугольника класса со стереотипом <<worker>> или <<internalWorker>> (рис. 5.4, а).Сотрудник для связи с окружением (caseworker) – класс, служащий для представления в бизнес-системе такого сотрудника, который, являясь элементом бизнес-системы, непосредственно взаимодействует с актерами (бизнес-актерами) при реализации бизнес-процесса. Этот класс также может быть изображен в форме прямоугольника класса со стереотипом <<caseWorker>> (рис. 5.4, б).Бизнес-сущность (business entity) — специальный случай класса-сущности, который также не инициирует никаких сообщений. Этот класс служит для сохранения информации о результатах выполнения бизнес-процесса в моделируемой бизнес-системе или организации. Этот класс также может быть изображен в форме прямоугольника класса со стереотипом <<business entity>> (рис. 5.4, в).


Рис. 5.4.  Графическое изображение классов для моделирования бизнес-систем


Отношение агрегации


Агрегация (aggregation) - специальная форма ассоциации, которая служит для представления отношения типа "часть-целое" между агрегатом (целое) и его составной частью.

Отношение агрегации имеет место между несколькими классами в том случае, если один из классов представляет собой сущность, которая включает в себя в качестве составных частей другие сущности. Данное отношение имеет фундаментальное значение для описания структуры сложных систем, поскольку применяется для представления системных взаимосвязей типа "часть-целое". Раскрывая внутреннюю структуру системы, отношение агрегации показывает, из каких элементов состоит система, и как они связаны между собой.

С точки зрения модели отдельные части системы могут выступать в виде, как элементов, так и подсистем, которые, в свою очередь, тоже могут состоять из подсистем или элементов. Таким образом, данное отношение по своей сути описывает декомпозицию или разбиение сложной системы на более простые составные части, которые также могут быть подвергнуты декомпозиции, если в этом возникнет необходимость.

Очевидно, что рассматриваемое в таком аспекте деление системы на составные части представляет собой иерархию, но принципиально отличную от той, которая порождается отношением обобщения. Отличие заключается в том, что части системы никак не обязаны наследовать ее свойства и поведение, поскольку являются самостоятельными сущностями. Более того, части целого обладают собственными атрибутами и операциями, которые существенно отличаются от атрибутов и операций целого.

Графически отношение агрегации изображается сплошной линией, один из концов которой представляет собой не закрашенный внутри ромб. Этот ромб указывает на тот класс, который представляет собой "целое" или класс-контейнер. Остальные классы являются его "частями" (рис. 6.9).


Рис. 6.9.  Графическое изображение отношения агрегации в языке UML

В качестве примера отношения агрегации можно рассмотреть взаимосвязь типа "часть-целое", которая имеет место между классом Системный блок персонального компьютера и его составными частями: Процессор, Материнская плата, Оперативная память, Жесткий диск и Дисковод гибких дисков. Используя обозначения языка UML, компонентный состав системного блока можно представить в виде соответствующей диаграммы классов (рис. 6.10), которая в данном случае иллюстрирует отношение агрегации.


Рис. 6.10.  Диаграмма классов для иллюстрации отношения агрегации на примере системного блока ПК



Отношение ассоциации


Ассоциация (association) - семантическое отношение между двумя и более классами, которое специфицирует характер связи между соответствующими экземплярами этих классов.

Отношение ассоциации соответствует наличию произвольного отношения или взаимосвязи между классами. Данное отношение, как уже отмечалось в лекции 3, обозначается сплошной линией со стрелкой или без нее и с дополнительными символами, которые характеризуют специальные свойства ассоциации. Ассоциации рассматривались при изучении элементов диаграммы вариантов использования, применительно к диаграммам классов, тем не менее, семантика этого типа отношений значительно шире. В качестве дополнительных специальных символов могут использоваться имя ассоциации, символ навигации, а также имена и кратность классов-ролей ассоциации.

Имя ассоциации - необязательный элемент ее обозначения. Однако если оно задано, то записывается с заглавной буквы рядом с линией ассоциации. Отдельные классы ассоциации могут играть определенную роль в соответствующем отношении, на что явно указывает имя концевых точек ассоциации на диаграмме.

Наиболее простой случай данного отношения - бинарная ассоциация (binary association), которая служит для представления произвольного отношения между двумя классами. Она связывает в точности два различных класса и может быть ненаправленным (симметричным) или направленным отношением. Частный случай бинарной ассоциации - рефлексивная ассоциация, которая связывает класс с самим собой. Ненаправленная бинарная ассоциация изображается линией без стрелки. Для нее на диаграмме может быть указан порядок чтения классов с использованием значка в форме треугольника рядом с именем данной ассоциации.

В качестве простого примера ненаправленной бинарной ассоциации можно рассмотреть отношение между двумя классами - классом Компания и классом Сотрудник (рис. 6.1). Они связаны между собой бинарной ассоциацией Работает, имя которой указано на рисунке рядом с линией ассоциации. Для данного отношения определен следующий порядок чтения следования классов - сотрудник работает в компании.



Рис. 6.1.  Графическое изображение ненаправленной бинарной ассоциации между классами

Направленная бинарная ассоциация изображается сплошной линией с простой стрелкой на одной из ее концевых точек. Направление этой стрелки указывает на то, какой класс является первым, а какой - вторым.

В качестве простого примера направленной бинарной ассоциации можно рассмотреть отношение между двумя классами - классом Клиент и классом Счет (рис. 6.2). Они связаны между собой бинарной ассоциацией с именем Имеет, для которой определен порядок следования классов. Это означает, что конкретный объект класса Клиент всегда должен указываться первым при рассмотрении взаимосвязи с объектом класса Счет. Другими словами, эти объекты классов образуют кортеж элементов, например, <клиент, счет_1, счет_2,…, счет_n>.


Рис. 6.2.  Графическое изображение направленной бинарной ассоциации между классами

Частный случай отношения ассоциации - так называемая исключающая ассоциация (Xor-association). Семантика данной ассоциации указывает на то, что из нескольких потенциально возможных вариантов данной ассоциации в каждый момент времени может использоваться только один. На диаграмме классов исключающая ассоциация изображается пунктирной линией, соединяющей две и более ассоциации (рис. 6.3), рядом с которой записывается ограничение в форме строки текста в фигурных скобках: {xor}.


Рис. 6.3.  Графическое изображение исключающей ассоциации между тремя классами

Тернарная ассоциация связывает отношением три класса. Ассоциация более высокой арности называется n-арной ассоциацией.

n-арная ассоциация (n-ary association) - ассоциация между тремя и большим числом классов.

Каждый экземпляр такой ассоциации представляет собой упорядоченный набор (кортеж), содержащий n экземпляров из соответствующих классов. Такая ассоциация связывает отношением более чем три класса, при этом класс может участвовать в ассоциации более чем один раз.


Каждый экземпляр n-арной ассоциации представляет собой n- арный кортеж, состоящий из объектов соответствующих классов. В этом контексте бинарная ассоциация является частным случаем n-арной ассоциации, когда значение n=2, но имеет собственное обозначение. Бинарная ассоциация - это специальный случай n-арной ассоциации.

Графически n-арная ассоциация обозначается ромбом, от которого ведут линии к символам классов данной ассоциации. Сам же ромб соединяется с символами классов сплошными линиями. Обычно линии проводятся от вершин ромба или от середины его сторон. Имя n-арной ассоциации записывается рядом с ромбом соответствующей ассоциации. Однако порядок классов в n-арной ассоциации, в отличие от порядка множеств в отношении, на диаграмме не фиксируется.

В качестве примера тернарной ассоциации можно рассмотреть отношение между тремя классами: Сотрудник, Компания и Проект. Данная ассоциация указывает на наличие отношения между этими тремя классами, которое может представлять информацию о проектах, реализуемых в компании, и о сотрудниках, участвующих в выполнении отдельных проектов (рис. 6.4).


Рис. 6.4.  Графическое изображение тернарной ассоциации между тремя классами

Класс может быть присоединен к линии ассоциации пунктирной линией. Это означает, что данный класс обеспечивает поддержку свойств соответствующей n-арной ассоциации, а сама n-арная ассоциация имеет атрибуты, операции и/или ассоциации. Другими словами, такая ассоциация является классом с соответствующим обозначением в виде прямоугольника и самостоятельным элементом языка UML - ассоциацией классом (Association Class).

Ассоциация класс (association class) - модельный элемент, который одновременно является ассоциацией и классом. Ассоциация класс может рассматриваться как ассоциация, которая обладает свойствами класса, или как класс, имеющий также свойства ассоциации.

Как уже упоминалось, отдельный класс в ассоциации может играть определенную роль в данной ассоциации. Эта роль может быть явно специфицирована на диаграмме классов.


С этой целью в языке UML вводится в рассмотрение специальный элемент - концевая точка ассоциации или конец ассоциации (Association End), который графически соответствует точке соединения линии ассоциации с отдельным классом.

Конец ассоциации (association end) - концевая точка ассоциации, которая связывает ассоциацию с классификатором.

Конец ассоциации - часть ассоциации, но не класса. Каждая ассоциация может иметь два или больше концов ассоциации. Наиболее важные свойства ассоциации указываются на диаграмме рядом с этими элементами ассоциации и должны перемещаться вместе с ними. Одним из таких дополнительных обозначений является имя роли отдельного класса, входящего в ассоциацию.

Роль (role) - имеющее имя специфическое поведение некоторой сущности, рассматриваемой в определенном контексте. Роль может быть статической или динамической.

Имя роли представляет собой строку текста рядом с концом ассоциации для соответствующего класса. Она указывает на специфическую роль, которую играет класс, являющийся концом рассматриваемой ассоциации. Имя роли не обязательный элемент обозначений и может отсутствовать на диаграмме.

Следующий элемент обозначений - кратность ассоциации. Кратность относится к концам ассоциации и обозначается в виде интервала целых чисел, аналогично кратности атрибутов и операций классов, но без прямых скобок. Этот интервал записывается рядом с концом соответствующей ассоциации и означает потенциальное число отдельных экземпляров класса, которые могут иметь место, когда остальные экземпляры или объекты классов фиксированы.

Так, для примера (рис. 6.4) кратность "1" для класса Компания означает, что каждый сотрудник может работать только в одной компании. Кратность "1..*" для класса Сотрудник означает, что в каждой компании могут работать несколько сотрудников, общее число которых заранее неизвестно и ничем не ограничено. Вместо кратности "1..*" нельзя записать только символ "*", поскольку последний означает кратность "0..*".Для данного примера это означало бы, что отдельные компании могут совсем не иметь сотрудников в своем штате. Такая кратность приемлема в ситуациях, когда в компании вообще не выполняется никаких проектов.

Имя ассоциации рассматривается в качестве отдельного атрибута у соответствующих классов ассоциаций и может быть указано на диаграмме явным способом в определенной секции прямоугольника класса.

Ассоциация является наиболее общей формой отношения в языке UML. Все другие типы рассматриваемых отношений можно считать частным случаем данного отношения. Однако важность выделения специфических семантических свойств и дополнительных характеристик для других типов отношений обусловливают необходимость их самостоятельного изучения при построении диаграмм классов. Поскольку эти отношения имеют специальные обозначения и относятся к базовым понятиям языка UML, следует перейти к их последовательному рассмотрению.


Отношение композиции


Композиция (composition) - разновидность отношения агрегации, при которой составные части целого имеют такое же время жизни, что и само целое. Эти части уничтожаются вместе с уничтожением целого.

Отношение композиции - частный случай отношения агрегации. Это отношение служит для спецификации более сильной формы отношения "часть-целое", при которой составляющие части тесно взаимосвязаны с целым. Особенность этой взаимосвязи заключается в том, что части не могут выступать в отрыве от целого, т.е. с уничтожением целого уничтожаются и все его составные части.

Композит (composite) - класс, который связан отношением композиции с одним или большим числом классов.

Графически отношение композиции изображается сплошной линией, один из концов которой представляет собой закрашенный внутри ромб. Этот ромб указывает на тот класс, который представляет собой класс-композит. Остальные классы являются его "частями" (рис. 6.11).


Рис. 6.11.  Графическое изображение отношения композиции в языке UML

Возможно, самым наглядным примером этого отношения является живая клетка в биологии, в отрыве от которой не могут существовать ее составные части. Другой практический пример - окно графического интерфейса программы, которое может состоять из строки заголовка, полос прокрутки, главного меню, рабочей области и строки состояния. Нетрудно заключить, что подобное окно представляет собой класс, а его составные элементы также являются отдельными классами. Последнее обстоятельство характерно для отношения композиции, поскольку отражает различные способы представления данного отношения.

Для отношений композиции и агрегации могут использоваться дополнительные обозначения, применяемые для отношения ассоциации. А именно, могут указываться кратности отдельных классов, которые в общем случае не обязательны. Применительно к описанному выше примеру класс Окно программы является классом-композитом, а взаимосвязи составляющих его частей могут быть изображены следующей диаграммой классов (рис. 6.12).


Рис. 6.12.  Диаграмма классов для иллюстрации отношения композиции на примере класса-композита Окно программы



Отношение обобщения


Отношение обобщения является обычным таксономическим отношением или отношением классификации между более общим элементом (родителем или предком) и более частным или специальным элементом (дочерним или потомком).

Обобщение (generalization) - таксономическое отношение между более общим понятием и менее общим понятием.

Менее общий элемент модели должен быть согласован с более общим элементом и может содержать дополнительную информацию. Данное отношение используется для представления иерархических взаимосвязей между различными элементами языка UML, такими как пакеты, классы, варианты использования.

Применительно к диаграмме классов данное отношение описывает иерархическое строение классов и наследование их свойств и поведения.

Наследование (inheritance) - специальный концептуальный механизм, посредством которого более специальные элементы включают в себя структуру и поведение более общих элементов.

Согласно одному из главных принципов методологии ООАП - наследованию, класс-потомок обладает всеми свойствами и поведением класса-предка, а также имеет собственные свойства и поведение, которые могут отсутствовать у класса-предка.

Родитель, предок (parent) - в отношении обобщения более общий элемент. Потомок (child) - специализация одного из элементов отношения обобщения, называемого в этом случае родителем.

На диаграммах отношение обобщения обозначается сплошной линией с треугольной стрелкой на одном из концов (рис. 6.5). Стрелка указывает на более общий класс (класс-предок или суперкласс), а ее начало - на более специальный класс (класс-потомок или подкласс).


Рис. 6.5.  Графическое изображение отношения обобщения в языке UML

От одного класса-предка одновременно могут наследовать несколько классов-потомков, что отражает таксономический характер данного отношения. В этом случае на диаграмме классов для подобного отношения обобщения указывается несколько линий со стрелками.

Например, класс Транспортное средство (курсив обозначает абстрактный класс) может выступать в качестве суперкласса для подклассов, соответствующих конкретным транспортным средствам, таким как: Автомобиль, Автобус, Трактор и другим.
Это может быть представлено графически в форме диаграммы классов следующего вида (рис. 6.6).


Рис. 6.6.  Пример графического изображения отношения обобщения для нескольких классов-потомков

С целью упрощения обозначений на диаграмме классов и уменьшения числа стрелок-треугольников и совокупности линий, обозначающих одно и то же отношение обобщения, может быть просто изображена стрелка. В этом случае отдельные линии сходятся к стрелке, которая имеет с этими линиями единственную точку пересечения (рис. 6.7).


Рис. 6.7.  Альтернативный вариант графического изображения отношения обобщения классов для случая объединения отдельных линий

Графическое изображение отношения обобщения по форме соответствует графу специального вида, а именно - иерархическому дереву. Как нетрудно заметить, в этом случае класс-предок является корнем дерева, а классы-потомки - его листьями. Отличие заключается в возможности указания на диаграмме классов дополнительной семантической информации, которая может отражать различные теоретико-множественные характеристики данного отношения. При этом класс-предок на диаграмме может занимать произвольное положение относительно своих классов-потомков, определяемое лишь соображениями удобства.

В дополнение к простой стрелке обобщения может быть присоединена строка текста, указывающая на специальные свойства этого отношения в форме ограничения. Этот текст будет относиться ко всем линиям обобщения, которые идут к классам-потомкам. Поскольку отмеченное свойство касается всех подклассов данного отношения, именно поэтому спецификация этого свойства осуществляется в форме ограничения, которое должно быть записано в фигурных скобках.

В качестве ограничений могут быть использованы следующие ключевые слова языка UML:

{complete} - означает, что в данном отношении обобщения специфицированы все классы-потомки, и других классов-потомков у данного класса-предка быть не может.{incomplete} - означает случай, противоположный первому.


А именно, предполагается, что на диаграмме указаны не все классы-потомки. В последующем возможно разработчик восполнит их перечень, не изменяя уже построенную диаграмму.{disjoint} - означает, что классы-потомки не могут содержать объектов, одновременно являющихся экземплярами двух или более классов.{overlapping} - случай, противоположный предыдущему. А именно, предполагается, что отдельные экземпляры классов-потомков могут принадлежать одновременно нескольким классам.

С учетом дополнительного использования стандартного ограничения диаграмма классов (рис. 6.7) может быть уточнена (рис. 6.8).


Рис. 6.8.  Вариант уточненного графического изображения отношения обобщения классов с использованием строки-ограничения


Рекомендации по построению диаграмм классов


Процесс разработки диаграммы классов занимает центральное место при разработке проектов сложных систем. От умения правильно выбрать классы и установить между ними взаимосвязи часто зависит не только успех процесса проектирования, но и производительность выполнения программы. Как показывает практика ООАП, каждый программист в той или иной степени использует личный опыт при разработке новых проектов. Это обусловлено желанием свести новую задачу к уже решенным, чтобы иметь возможность применять не только проверенные фрагменты программного кода, но и отдельные компоненты или библиотеки компонентов.

При определении классов, атрибутов и операций, задании их имен и типов перед российскими разработчиками всегда встает вопрос: какой язык взять за основу, русский или английский? С одной стороны, использование родного языка для описания модели кажется наиболее естественным способом ее представления и в наибольшей степени отражает коммуникативную функцию модели системы. С другой стороны, разработка модели всего лишь один из этапов создания соответствующей системы, а применение инструментальных средств для ее реализации в абсолютном большинстве случаев требует использования англоязычных терминов. Именно поэтому возникает характерная неоднозначность, с которой, по-видимому, совершенно незнакома англоязычная аудитория.

При построении диаграммы вариантов использования, общей концептуальной модели проектируемой системы, применение русскоязычных терминов оправдано с точки зрения описания структуры предметной области. Это способствует взаимопониманию, а также эффективному общению между заказчиком и разработчиком проекта. При построении остальных типов диаграмм следует придерживаться разумного компромисса.

После разработки диаграммы классов процесс ООАП может быть продолжен в двух направлениях. С одной стороны, если поведение системы тривиально, то можно приступить к разработке диаграмм кооперации и последовательности. Особенности построения диаграмм кооперации будут рассмотрены в следующей главе. Однако для сложных динамических систем, в частности для параллельных систем и систем реального времени, важнейшим аспектом их функционирования является поведение. Специфика поведения таких систем может быть представлена на диаграммах состояний и деятельности, разработка которых в общем случае не обязательна, а определяется конкретным проектом.



Кооперация


Кооперация (collaboration) — спецификация множества объектов отдельных классов, совместно взаимодействующих с целью реализации отдельных вариантов использования в общем контексте моделируемой системы.

Понятие кооперации – одно из фундаментальных в языке UML. Цель самой кооперации состоит в том, чтобы специфицировать особенности реализации отдельных вариантов использования или наиболее значимых операций в системе. Кооперация определяет структуру поведения системы в терминах взаимодействия участников этой кооперации.

На диаграмме кооперации размещаются объекты, представляющие собой экземпляры классов, связи между ними, которые в свою очередь являются экземплярами ассоциаций и сообщения. Связи дополняются стрелками сообщений, при этом показываются только те объекты, которые участвуют в реализации моделируемой кооперации. Далее, как и на диаграмме классов, показываются структурные отношения между объектами в виде различных соединительных линий. Связи могут дополняться именами ролей, которые играют объекты в данной взаимосвязи. И, наконец, изображаются динамические взаимосвязи — потоки сообщений в форме стрелок с указанием направления рядом с соединительными линиями между объектами, при этом задаются имена сообщений и их порядковые номера в общей последовательности сообщений.

Одна и та же совокупность объектов может участвовать в реализации различных коопераций. В зависимости от рассматриваемой кооперации, могут изменяться как связи между отдельными объектами, так и поток сообщений между ними. Именно это отличает диаграмму кооперации от диаграммы классов, на которой должны быть указаны все без исключения классы, их атрибуты и операции, а также все ассоциации и другие структурные отношения между элементами модели.



Объекты и их графическое изображение


Объект(object) — сущность с хорошо определенными границами и индивидуальностью, которая инкапсулирует состояние и поведение.

В контексте языка UML любой объект является экземпляром класса, описанного в модели и представленного на диаграмме классов. Объект создается на этапе реализации модели или выполнения программы. Он имеет собственное имя и конкретные значения атрибутов. Следует рассмотреть особенности семантики и графической нотации объектов, из которых строятся диаграммы.

Для диаграмм кооперации полное имя объекта в целом представляет собой строку текста, разделенную двоеточием и записанную в формате:

<собственное имя объекта >'/'<Имя роли класса>:<Имя класса >.

Имя роли класса указывается в том случае, когда соответствующий класс отсутствует в модели или разработчику необходимо акцентировать внимание на особенности его использования в рассматриваемом контексте моделирования взаимодействия. Имя класса – это имя одного из классов, представленного на диаграмме классов. Важно отметить, что вся запись имени объекта подчеркивается, что является визуальным признаком объектов на различных диаграммах языка UML.

Если указано собственное имя объекта, то оно должно начинаться со строчной буквы. В тоже время имя объекта, имя роли с символом "/" или имя класса могут отсутствовать. Однако двоеточие всегда должно стоять перед именем класса, а косая черта – перед именем роли.

Таким образом, на диаграммах кооперации могут встретиться следующие варианты возможных записей полного имени объекта:

о : C– объект с собственным именем о, экземпляр класса С.

: C– анонимный объект, экземпляр класса С.

о :(или просто о) — объект-сирота с собственным именем о.

о / R : C— объект с собственным именем о, экземпляр класса С, играющий роль R.

/ R : C— анонимный объект, экземпляр класса С, играющий роль R.

о / R— объект-сирота с собственным именем о, играющий роль R.

/ R— анонимный объект и одновременно объект-сирота, играющий роль R.

Примеры изображения объектов на диаграммах кооперации приводятся на рис. 7.1.



Рис. 7.1.  Примеры графических изображений объектов на диаграммах кооперации уровня примеров

Если собственное имя объекта отсутствует, то такой объект принято называть анонимным. Однако в этом случае обязательно ставится двоеточие перед именем соответствующего класса (рис. 7.1, в). Отсутствовать может и имя класса – такой объект называется сиротой. Для него записывается только собственное имя объекта, двоеточие не ставится, имя класса не указываются (рис. 7.1, г). Если для объектов указываются атрибуты, то в большинстве случаев они принимают конкретные значения (рис. 7.1, б). Для отдельных объектов (рис. 7.1, д, е) могут быть дополнительно указаны роли, которые они играют в кооперации.

В контексте языка UML все объекты делятся на две категории: пассивные и активные. Пассивный объект оперирует только данными и не может инициировать деятельность по управлению другими объектами. Однако пассивные объекты могут посылать сигналы в процессе выполнения запросов, которые они обрабатывают. На диаграмме кооперации пассивные объекты изображаются обычным образом без дополнительных стереотипов.

Активный объект (active object) имеет собственный процесс управления и может инициировать деятельность по управлению другими объектами.

Активный объект на диаграмме кооперации обозначаются прямоугольником с утолщенными границами (рис. 7.2). Каждый активный объект является владельцем определенного процесса управления. В данном фрагменте диаграммы кооперации активный объект а : Клиент является инициатором открытия счета, который представлен анонимным объектом : Счет.


Рис. 7.2.  Графическое изображение активного объекта (слева) на диаграмме кооперации

Мультиобъект(multiobject) представляет собой множество анонимных объектов, которые могут быть образованы на основе одного класса.

На диаграмме кооперации мультиобъект используется для того, чтобы показать операции и сигналы, которые адресованы всему множеству анонимных объектов.


Мультиобъект изображается двумя прямоугольниками, один из которых выступает из-за верхней правой вершины другого (рис. 7.2, а). При этом стрелка взаимосвязи относится ко всему множеству объектов, которые обозначает данный мультиобъект. На диаграмме кооперации может быть явно указано отношение агрегации (композиции) между мультиобъектом и отдельным объектом из его множества (рис. 7.3, б).


Рис. 7.3.  Графическое изображение мультиобъектов на диаграмме кооперации

В следующем примере рассматривается ситуация с отправкой почтового сообщений клиенту из редактора электронной почты (рис. 7.4). Анонимный активный объект класса РедакторEmail вначале посылает сообщение анонимному мультиобъекту класса Клиент. Это сообщение инициирует выбор единственного объекта класса Клиент, удовлетворяющего дополнительным условиям. После этого выбранному объекту посылается сообщение о необходимости отправить электронное письмо.


Рис. 7.4.  Фрагмент диаграммы кооперации для выбора адреса клиента для отправки электронного письма

Составной объект (composite object) или объект-композит предназначен для представления объекта, имеющего собственную структуру и внутренние потоки (нити) управления.

Составной объект является экземпляром класса-композита, который связан отношением композиции со своими частями. Аналогичные отношения связывают между собой и соответствующие объекты. На диаграммах кооперации такой составной объект изображается как обычный объект, состоящий из двух секций: верхней и нижней. В верхней секции записывается имя составного объекта, а в нижней – его объекты-части вместо списка атрибутов (рис. 7.5). При этом допускается иметь в качестве частей другие составные объекты.


Рис. 7.5.  Графическое изображение составного объекта на диаграмме кооперации

При изображении диаграммы кооперации отношения между объектами описываются с помощью связей, которые являются экземплярами соответствующих ассоциаций.


Рекомендации по построению диаграмм кооперации


Построение диаграммы кооперации можно начинать сразу после построения диаграммы классов. При разработке диаграмм кооперации вначале изображаются объекты и связи между ними. Далее на диаграмму кооперации необходимо нанести все сообщения, указав их порядок и другие семантические особенности. Диаграмма кооперации может содержать только те объекты и связи, которые уже определены на построенной ранее диаграмме классов. В противном случае, если возникает необходимость включения в диаграмму кооперации объектов, которые создаются на основе отсутствующих классов, то диаграмма классов должна быть модифицирована посредством включения в нее явного описания этих классов.

Процесс построения диаграммы кооперации должен быть согласован с процессами построения диаграммы классов и диаграммы последовательности. В первом случае, как уже отмечалось, необходимо следить за использованием только тех объектов, для которых определены порождающие их классы. Во втором случае необходимо согласовывать последовательности передаваемых сообщений. Речь идет о том, что не допускается различный порядок следования сообщений для моделирования одного и того же взаимодействия на диаграмме кооперации и диаграмме последовательности.

Необходимо помнить, что диаграмма кооперации, с одной стороны, обеспечивает концептуально согласованный переход от статической модели диаграммы классов к динамическим моделям поведения, представляемым диаграммами последовательности, состояний и деятельности. С другой стороны, диаграмма этого типа предопределяет особенности реализации модели на диаграммах компонентов и развертывания, которые будут рассмотрены в последующих лекциях.



Сообщения и их графическое изображение


Сообщение (message) — спецификация передачи информации от одного элемента модели к другому с ожиданием выполнения определенных действий со стороны принимающего элемента.

При этом первый объект предполагает, что после получения сообщения вторым объектом последует выполнение некоторого действия. На диаграмме кооперации сообщение является причиной или стимулом начала выполнения операций, отправки сигналов, создания и уничтожения отдельных объектов. Связь обеспечивает канал для направленной передачи сообщений между объектами от объекта-источника к объекту-получателю.

В этом смысле сообщение представляет собой законченный фрагмент информации, который отправляется одним объектом другому. При этом прием сообщения может инициировать выполнение определенных действий, направленных на решение отдельной задачи тем объектом, которому это сообщение отправлено. Сообщения не только передают информацию, но и требуют или предполагают от принимающего объекта выполнения ожидаемых действий. Сообщения могут инициировать выполнение операций объектом соответствующего класса, а параметры этих операций передаются вместе с сообщением.

В таком контексте каждое сообщение имеет направление от объекта, который инициирует и отправляет сообщение, к объекту, который его получает. Иногда отправителя сообщения называют клиентом, а получателя – сервером. При этом сообщение от клиента имеет форму запроса некоторого сервиса, а реакция сервера на запрос после получения сообщения может быть связана с выполнением определенных действий или передачи клиенту необходимой информации тоже в форме сообщения.

Сообщения в языке UML также специфицируют роли, которые играют объекты — отправитель и получатель сообщения. Сообщения на диаграмме кооперации изображаются дополнительными стрелками рядом с соответствующей связью или ролью ассоциации. Направление стрелки указывает на получателя сообщения. Внешний вид стрелки сообщения имеет определенный смысл. На диаграммах кооперации может использоваться один из трех типов стрелок для обозначения сообщений (рис. 7.7).


Каждый из термов представляет отдельный уровень процедурной вложенности в форме законченной итерации. Наиболее верхний уровень соответствует самому левому терму последовательности. Если все потоки управления параллельные, то вложенность отсутствует. Каждый терм последовательности имеет следующий синтаксис: [Целое число | Имя] [Рекуррентность].

Целое число указывает на порядковый номер сообщения в процедурной последовательности верхнего уровня. Сообщения, номера которых отличаются на единицу, следуют подряд один за другим.Имя в форме буквы алфавита используется для спецификации параллельных потоков (нитей) управления. Сообщения, которые отличаются только именем, являются параллельными на этом уровне вложенности. На одном уровне вложенности все нити управления эквивалентны в смысле приоритета передачи сообщений.Рекуррентность используется для указания итеративного или условного характера выполнения передачи сообщений. Семантика рекуррентности представляет ноль или больше сообщений, которые должны быть выполнены в зависимости от записанного условия. Возможны два варианта записи рекуррентности:

'*''['Предложение-итерация']'для записи итеративного выполнения соответствующего выражения. Итерация представляет последовательность сообщений одного уровня вложенности. Предложение-итерация может быть опущено, если количество итераций никак не специфицируется. Наиболее часто предложение-итерация записывается на псевдокоде или языке программирования. В языке UML формат записи этого предложения строгим образом не определен.

'['Предложение-условие']'для записи ветвления. Эта форма записи специфицирует условие для данного сообщения, передача которого по данной ветви возможна только при его истинности.

В общем случае предложение-условие - обычное булевское выражение и предназначено для синхронизации отдельных нитей потока управления. Записывается в квадратных скобках и может быть опущено, если оно отсутствует у данного сообщения. Наличие этого условия обеспечивает передачу сообщения только в том случае, если это условие принимает значение "истина".


Предложение- условие может быть записано на обычном тексте, псевдокоде или некотором языке программирования.

Предложение-условие записывается так же, как и итерация, но без звездочки. Это можно понимать как некоторую одношаговую итерацию. В общем случае предполагается, что специфицированная итерация выполняется последовательно. Если необходимо отметить возможность параллельного выполнения итерации, то для этой цели в языке UML используется символ "*||". Итерация не распространяется на вложенные уровни данного потока или нити. Каждый уровень должен иметь собственное представление для итеративного повторения процедурной последовательности.

Имя сообщения, записанное в сигнатуре после возвращаемого значения, означает имя события, которое инициируется объектом-получателем сообщения после его приема. Наиболее часто таким событием является вызов операции у объекта-получателя. Это может быть реализовано различными способами, один из которых – явное указание в качестве имени сообщения вызываемой операции. Тогда соответствующая операция должна быть определена в том классе, которому принадлежит объект-получатель.

Список аргументов представляет собой разделенные запятыми и заключенные в круглые скобки действительные параметры той операции, вызов которой инициируется данным сообщением. Список аргументов может быть пустым, однако скобки все равно записываются. Для записи аргументов также может быть использован некоторый псевдокод или язык программирования.

В языке UML предусмотрены стандартные действия, выполняемые в ответ на получение соответствующего сообщения. Они могут быть явно указаны на диаграмме кооперации в форме стереотипа перед именем сообщения, к которому они относятся, или выше его. В этом случае они записываются в угловых кавычках.

В языке UML определены следующие стереотипы сообщений:



<<call>>(вызвать) – сообщение, требующее вызова операции или процедуры объекта-получателя. Если сообщение с этим стереотипом рефлексивное, то оно инициирует локальный вызов операции у пославшего это сообщение объекта.



<<return>>(возвратить) – сообщение, возвращающее значение выполненной операции или процедуры вызвавшему ее объекту. Значение результата может инициировать ветвление потока управления.

<<create>>(создать) – сообщение, требующее создания другого объекта для выполнения определенных действий. Созданный объект может стать активным (ему передается поток управления), а может остаться пассивным.

<<destroy>>(уничтожить) – сообщение с явным требованием уничтожить соответствующий объект. Посылается в том случае, когда необходимо прекратить нежелательные действия со стороны существующего в системе объекта, либо когда объект больше не нужен и должен освободить задействованные им системные ресурсы.

<<send>>(послать) – обозначает посылку другому объекту сигнала, который асинхронно инициируется одним объектом и принимается (перехватывается) другим. Отличие сигнала от сообщения заключается в том, что сигнал должен быть явно описан в том классе, объект которого инициирует его передачу.




Рис. 7.7.  Графическое изображение различных типов сообщений на диаграмме кооперации

Сплошная линия с треугольной стрелкой (рис. 7.7, а) обозначает вызов процедуры (операции) или передачу потока управления. Сообщения этого типа могут быть использованы параллельно активными объектами, когда один из них передает сообщение этого типа и ожидает, пока не закончится некоторая последовательность действий, выполняемая вторым объектом. Обычно все такие сообщения синхронны, т. е. инициируются по завершении деятельности или при выполнении определенного условия.Сплошная линия с V-образной стрелкой (рис. 7.7, б) обозначает асинхронное сообщение в простом потоке управления. В этом случае клиент передает асинхронное сообщение и продолжает выполнять свою деятельность, не ожидая ответа от клиента.Пунктирная линия с V-образной стрелкой (рис. 7.7, в) обозначает возврат из вызова процедуры. Стрелки этого типа зачастую отсутствуют на диаграммах кооперации, поскольку неявно предполагается их существование после окончания процесса выполнения операции или деятельности.

Каждое сообщение может быть помечено строкой текста, которая имеет следующий формат:

<Предшествующие сообщения> <Выражение последовательности> <Возвращаемое значение := имя сообщения> <(Список аргументов)>

Предшествующие сообщения — это разделенные запятыми номера сообщений, записанные перед наклонной чертой: <Номер сообщения','>* <'/'>. Если список номеров сообщений пуст, то вся запись, включая наклонную черту, опускается. Если номера сообщений указываются, то они должны соответствовать номерам других сообщений на этой же диаграмме кооперации. Смысл указания предшествующих сообщений заключается в том, что данное сообщение не может быть передано, пока не будут переданы своим адресатам все сообщения, номера которых записаны в данном списке.

Выражение последовательности — это разделенный точками список отдельных термов последовательностей, после которого записывается двоеточие: <Терм последовательности'.'…> ':'



Каждый из термов представляет отдельный уровень процедурной вложенности в форме законченной итерации. Наиболее верхний уровень соответствует самому левому терму последовательности. Если все потоки управления параллельные, то вложенность отсутствует. Каждый терм последовательности имеет следующий синтаксис: [Целое число | Имя] [Рекуррентность].

Целое число указывает на порядковый номер сообщения в процедурной последовательности верхнего уровня. Сообщения, номера которых отличаются на единицу, следуют подряд один за другим.Имя в форме буквы алфавита используется для спецификации параллельных потоков (нитей) управления. Сообщения, которые отличаются только именем, являются параллельными на этом уровне вложенности. На одном уровне вложенности все нити управления эквивалентны в смысле приоритета передачи сообщений.Рекуррентность используется для указания итеративного или условного характера выполнения передачи сообщений. Семантика рекуррентности представляет ноль или больше сообщений, которые должны быть выполнены в зависимости от записанного условия. Возможны два варианта записи рекуррентности:

'*''['Предложение-итерация']'для записи итеративного выполнения соответствующего выражения. Итерация представляет последовательность сообщений одного уровня вложенности. Предложение-итерация может быть опущено, если количество итераций никак не специфицируется. Наиболее часто предложение-итерация записывается на псевдокоде или языке программирования. В языке UML формат записи этого предложения строгим образом не определен.

'['Предложение-условие']'для записи ветвления. Эта форма записи специфицирует условие для данного сообщения, передача которого по данной ветви возможна только при его истинности.

В общем случае предложение-условие - обычное булевское выражение и предназначено для синхронизации отдельных нитей потока управления. Записывается в квадратных скобках и может быть опущено, если оно отсутствует у данного сообщения. Наличие этого условия обеспечивает передачу сообщения только в том случае, если это условие принимает значение "истина".


Предложение- условие может быть записано на обычном тексте, псевдокоде или некотором языке программирования.

Предложение-условие записывается так же, как и итерация, но без звездочки. Это можно понимать как некоторую одношаговую итерацию. В общем случае предполагается, что специфицированная итерация выполняется последовательно. Если необходимо отметить возможность параллельного выполнения итерации, то для этой цели в языке UML используется символ "*||". Итерация не распространяется на вложенные уровни данного потока или нити. Каждый уровень должен иметь собственное представление для итеративного повторения процедурной последовательности.

Имя сообщения, записанное в сигнатуре после возвращаемого значения, означает имя события, которое инициируется объектом-получателем сообщения после его приема. Наиболее часто таким событием является вызов операции у объекта-получателя. Это может быть реализовано различными способами, один из которых – явное указание в качестве имени сообщения вызываемой операции. Тогда соответствующая операция должна быть определена в том классе, которому принадлежит объект-получатель.

Список аргументов представляет собой разделенные запятыми и заключенные в круглые скобки действительные параметры той операции, вызов которой инициируется данным сообщением. Список аргументов может быть пустым, однако скобки все равно записываются. Для записи аргументов также может быть использован некоторый псевдокод или язык программирования.

В языке UML предусмотрены стандартные действия, выполняемые в ответ на получение соответствующего сообщения. Они могут быть явно указаны на диаграмме кооперации в форме стереотипа перед именем сообщения, к которому они относятся, или выше его. В этом случае они записываются в угловых кавычках.

В языке UML определены следующие стереотипы сообщений:



<<call>>(вызвать) – сообщение, требующее вызова операции или процедуры объекта-получателя. Если сообщение с этим стереотипом рефлексивное, то оно инициирует локальный вызов операции у пославшего это сообщение объекта.



<<return>>(возвратить) – сообщение, возвращающее значение выполненной операции или процедуры вызвавшему ее объекту. Значение результата может инициировать ветвление потока управления.

<<create>>(создать) – сообщение, требующее создания другого объекта для выполнения определенных действий. Созданный объект может стать активным (ему передается поток управления), а может остаться пассивным.

<<destroy>>(уничтожить) – сообщение с явным требованием уничтожить соответствующий объект. Посылается в том случае, когда необходимо прекратить нежелательные действия со стороны существующего в системе объекта, либо когда объект больше не нужен и должен освободить задействованные им системные ресурсы.

<<send>>(послать) – обозначает посылку другому объекту сигнала, который асинхронно инициируется одним объектом и принимается (перехватывается) другим. Отличие сигнала от сообщения заключается в том, что сигнал должен быть явно описан в том классе, объект которого инициирует его передачу.


Связи на диаграмме кооперации


Связь(link) — любое семантическое отношение между некоторой совокупностью объектов.

Связь как элемент языка UML является экземпляром или примером произвольной ассоциации и может иметь место между двумя и более объектами. Бинарная связь на диаграмме кооперации изображается отрезком сплошной линии, соединяющей два прямоугольника объектов (рис. 7.4). На концах этой линии дополнительно могут быть явно указаны имена ролей соответствующей ассоциации.

Связи не имеют собственных имен, поскольку идентичны как экземпляры некоторой ассоциации. Другими словами, все связи на диаграмме кооперации могут быть только анонимными и при необходимости записываются без двоеточия перед именем ассоциации. Однако чаще всего имена связей на диаграммах кооперации не указываются. Для связей не указывается также и кратность концевых точек. Однако другие обозначения специальных случаев отношений, такие как агрегация и композиция, могут присутствовать на отдельных концах связей. Например, символ связи типа агрегации между мультиобъектом класса Клиент и отдельным анонимным объектом класса Клиент (рис. 7.4).

Примеры связей с различными стереотипами изображены на рис. 7.6. Здесь представлена обобщенная схема компании с именем с, которая состоит из департаментов (анонимный мультиобъект класса Департамент). В последние входят сотрудники (анонимный мультиобъект класса Сотрудник). Рефлексивная связь указывает на то, что руководитель департамента является одновременно и его сотрудником.


Рис. 7.6.  Графическое изображение связей с различными стереотипами

Как было отмечено выше, особенности моделирования взаимодействия в контексте языка UML заключаются в том, чтобы специфицировать коммуникацию между множеством взаимодействующих объектов. Каждое взаимодействие описывается совокупностью сообщений, которыми участвующие в нем объекты обмениваются между собой.